Hyperbolic Metamaterial Devices for Wavefront Manipulation

Metasurfaces have shown great potential to reshape the wavefront of electromagnetic (EM) waves, but transmissive meta‐devices face challenges of low‐efficiency and/or fabrication complexities. Here, an alternative approach to realize high‐efficiency transmission‐mode meta‐devices to control EM wavef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2019-01, Vol.13 (1), p.n/a
Hauptverfasser: Yin, Xiang, Zhu, Hua, Guo, Huijie, Deng, Ming, Xu, Tao, Gong, Zhijie, Li, Xun, Hang, Zhi Hong, Wu, Chao, Li, Hongqiang, Chen, Shuqi, Zhou, Lei, Chen, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Laser & photonics reviews
container_volume 13
creator Yin, Xiang
Zhu, Hua
Guo, Huijie
Deng, Ming
Xu, Tao
Gong, Zhijie
Li, Xun
Hang, Zhi Hong
Wu, Chao
Li, Hongqiang
Chen, Shuqi
Zhou, Lei
Chen, Lin
description Metasurfaces have shown great potential to reshape the wavefront of electromagnetic (EM) waves, but transmissive meta‐devices face challenges of low‐efficiency and/or fabrication complexities. Here, an alternative approach to realize high‐efficiency transmission‐mode meta‐devices to control EM wavefronts, based on hyperbolic metamaterial (HMM) waveguides supporting tailored spoof surface plasmons (SSPs) on their side walls, is proposed. By manipulating the dispersions of SSPs through adjusting the HMM geometrical parameters, the phases of EM waves passing through such waveguides, which enables the design of meta‐devices with desired transmission‐phase profiles for particular wave‐manipulation applications, can be controlled. Microwave experiments are implemented to demonstrate two wave‐control effects based on the mechanism, that is, beam‐deflection and focusing, and a maximum conversion efficiency of 42.9% is achieved for the anomalous refracted beam. By scaling down the HMM meta‐devices, the proposal herein is applicable to optical frequencies and in principle promises significantly raised conversion efficiencies. The scheme herein can offer a higher effective refractive index and more tunable dispersion without using high‐index dielectric materials, and thus can serve as an effective and robust approach to make high‐efficiency transmissive meta‐devices with diversified functionalities. Hyperbolic metamaterial (HMM) meta‐devices are proposed to construct high‐efficiency transmissive metasurfaces for wavefront manipulation over the entire spectral regimes without the requirement of high‐index materials. HMM meta‐devices enable an anomalous refracted beam for linearly polarized and circularly polarized electromagnetic waves with conversion efficiencies of 42.9% in the microwave region and 77.9% in the near infrared region.
doi_str_mv 10.1002/lpor.201800081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2173728598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2173728598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-a55af803564384a657eedb7abead6e3386d583750987fd82862a791cf89238853</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwuet-ajSWa9Sf2o0FIRxWNIdyeQst2sybbSf--WSj06l3cOzzMDLyHXjI4Ypfy2bkMcccqAUgrshAwYKJEDFMXpcQd6Ti5SWlEq-1EDcjfdtRiXofZlNsfOrm2H0ds6e8CtLzFlLsTs027RxdB02dw2vt3UtvOhuSRnztYJr35zSD6eHt8n03y2eH6Z3M_yUkjNciuldUCFVGMBY6ukRqyW2i7RVgqFAFVJEFrSArSrgIPiVhesdFBwASDFkNwc7rYxfG0wdWYVNrHpXxrOtNAcZAE9NTpQZQwpRXSmjX5t484wavb9mH0_5thPLxQH4dvXuPuHNrPXxduf-wOUaWkH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2173728598</pqid></control><display><type>article</type><title>Hyperbolic Metamaterial Devices for Wavefront Manipulation</title><source>Access via Wiley Online Library</source><creator>Yin, Xiang ; Zhu, Hua ; Guo, Huijie ; Deng, Ming ; Xu, Tao ; Gong, Zhijie ; Li, Xun ; Hang, Zhi Hong ; Wu, Chao ; Li, Hongqiang ; Chen, Shuqi ; Zhou, Lei ; Chen, Lin</creator><creatorcontrib>Yin, Xiang ; Zhu, Hua ; Guo, Huijie ; Deng, Ming ; Xu, Tao ; Gong, Zhijie ; Li, Xun ; Hang, Zhi Hong ; Wu, Chao ; Li, Hongqiang ; Chen, Shuqi ; Zhou, Lei ; Chen, Lin</creatorcontrib><description>Metasurfaces have shown great potential to reshape the wavefront of electromagnetic (EM) waves, but transmissive meta‐devices face challenges of low‐efficiency and/or fabrication complexities. Here, an alternative approach to realize high‐efficiency transmission‐mode meta‐devices to control EM wavefronts, based on hyperbolic metamaterial (HMM) waveguides supporting tailored spoof surface plasmons (SSPs) on their side walls, is proposed. By manipulating the dispersions of SSPs through adjusting the HMM geometrical parameters, the phases of EM waves passing through such waveguides, which enables the design of meta‐devices with desired transmission‐phase profiles for particular wave‐manipulation applications, can be controlled. Microwave experiments are implemented to demonstrate two wave‐control effects based on the mechanism, that is, beam‐deflection and focusing, and a maximum conversion efficiency of 42.9% is achieved for the anomalous refracted beam. By scaling down the HMM meta‐devices, the proposal herein is applicable to optical frequencies and in principle promises significantly raised conversion efficiencies. The scheme herein can offer a higher effective refractive index and more tunable dispersion without using high‐index dielectric materials, and thus can serve as an effective and robust approach to make high‐efficiency transmissive meta‐devices with diversified functionalities. Hyperbolic metamaterial (HMM) meta‐devices are proposed to construct high‐efficiency transmissive metasurfaces for wavefront manipulation over the entire spectral regimes without the requirement of high‐index materials. HMM meta‐devices enable an anomalous refracted beam for linearly polarized and circularly polarized electromagnetic waves with conversion efficiencies of 42.9% in the microwave region and 77.9% in the near infrared region.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.201800081</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Conversion ; Devices ; Dielectrics ; Efficiency ; hyperbolic metamaterials ; Metamaterials ; metasurfaces ; Plasmons ; Refractivity ; Wave fronts ; wavefronts ; Waveguides</subject><ispartof>Laser &amp; photonics reviews, 2019-01, Vol.13 (1), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-a55af803564384a657eedb7abead6e3386d583750987fd82862a791cf89238853</citedby><cites>FETCH-LOGICAL-c3571-a55af803564384a657eedb7abead6e3386d583750987fd82862a791cf89238853</cites><orcidid>0000-0002-5456-9345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.201800081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.201800081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Guo, Huijie</creatorcontrib><creatorcontrib>Deng, Ming</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Gong, Zhijie</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Hang, Zhi Hong</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Chen, Shuqi</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><title>Hyperbolic Metamaterial Devices for Wavefront Manipulation</title><title>Laser &amp; photonics reviews</title><description>Metasurfaces have shown great potential to reshape the wavefront of electromagnetic (EM) waves, but transmissive meta‐devices face challenges of low‐efficiency and/or fabrication complexities. Here, an alternative approach to realize high‐efficiency transmission‐mode meta‐devices to control EM wavefronts, based on hyperbolic metamaterial (HMM) waveguides supporting tailored spoof surface plasmons (SSPs) on their side walls, is proposed. By manipulating the dispersions of SSPs through adjusting the HMM geometrical parameters, the phases of EM waves passing through such waveguides, which enables the design of meta‐devices with desired transmission‐phase profiles for particular wave‐manipulation applications, can be controlled. Microwave experiments are implemented to demonstrate two wave‐control effects based on the mechanism, that is, beam‐deflection and focusing, and a maximum conversion efficiency of 42.9% is achieved for the anomalous refracted beam. By scaling down the HMM meta‐devices, the proposal herein is applicable to optical frequencies and in principle promises significantly raised conversion efficiencies. The scheme herein can offer a higher effective refractive index and more tunable dispersion without using high‐index dielectric materials, and thus can serve as an effective and robust approach to make high‐efficiency transmissive meta‐devices with diversified functionalities. Hyperbolic metamaterial (HMM) meta‐devices are proposed to construct high‐efficiency transmissive metasurfaces for wavefront manipulation over the entire spectral regimes without the requirement of high‐index materials. HMM meta‐devices enable an anomalous refracted beam for linearly polarized and circularly polarized electromagnetic waves with conversion efficiencies of 42.9% in the microwave region and 77.9% in the near infrared region.</description><subject>Conversion</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Efficiency</subject><subject>hyperbolic metamaterials</subject><subject>Metamaterials</subject><subject>metasurfaces</subject><subject>Plasmons</subject><subject>Refractivity</subject><subject>Wave fronts</subject><subject>wavefronts</subject><subject>Waveguides</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwuet-ajSWa9Sf2o0FIRxWNIdyeQst2sybbSf--WSj06l3cOzzMDLyHXjI4Ypfy2bkMcccqAUgrshAwYKJEDFMXpcQd6Ti5SWlEq-1EDcjfdtRiXofZlNsfOrm2H0ds6e8CtLzFlLsTs027RxdB02dw2vt3UtvOhuSRnztYJr35zSD6eHt8n03y2eH6Z3M_yUkjNciuldUCFVGMBY6ukRqyW2i7RVgqFAFVJEFrSArSrgIPiVhesdFBwASDFkNwc7rYxfG0wdWYVNrHpXxrOtNAcZAE9NTpQZQwpRXSmjX5t484wavb9mH0_5thPLxQH4dvXuPuHNrPXxduf-wOUaWkH</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Yin, Xiang</creator><creator>Zhu, Hua</creator><creator>Guo, Huijie</creator><creator>Deng, Ming</creator><creator>Xu, Tao</creator><creator>Gong, Zhijie</creator><creator>Li, Xun</creator><creator>Hang, Zhi Hong</creator><creator>Wu, Chao</creator><creator>Li, Hongqiang</creator><creator>Chen, Shuqi</creator><creator>Zhou, Lei</creator><creator>Chen, Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5456-9345</orcidid></search><sort><creationdate>201901</creationdate><title>Hyperbolic Metamaterial Devices for Wavefront Manipulation</title><author>Yin, Xiang ; Zhu, Hua ; Guo, Huijie ; Deng, Ming ; Xu, Tao ; Gong, Zhijie ; Li, Xun ; Hang, Zhi Hong ; Wu, Chao ; Li, Hongqiang ; Chen, Shuqi ; Zhou, Lei ; Chen, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-a55af803564384a657eedb7abead6e3386d583750987fd82862a791cf89238853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conversion</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Efficiency</topic><topic>hyperbolic metamaterials</topic><topic>Metamaterials</topic><topic>metasurfaces</topic><topic>Plasmons</topic><topic>Refractivity</topic><topic>Wave fronts</topic><topic>wavefronts</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Guo, Huijie</creatorcontrib><creatorcontrib>Deng, Ming</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Gong, Zhijie</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Hang, Zhi Hong</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Chen, Shuqi</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xiang</au><au>Zhu, Hua</au><au>Guo, Huijie</au><au>Deng, Ming</au><au>Xu, Tao</au><au>Gong, Zhijie</au><au>Li, Xun</au><au>Hang, Zhi Hong</au><au>Wu, Chao</au><au>Li, Hongqiang</au><au>Chen, Shuqi</au><au>Zhou, Lei</au><au>Chen, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Metamaterial Devices for Wavefront Manipulation</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2019-01</date><risdate>2019</risdate><volume>13</volume><issue>1</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Metasurfaces have shown great potential to reshape the wavefront of electromagnetic (EM) waves, but transmissive meta‐devices face challenges of low‐efficiency and/or fabrication complexities. Here, an alternative approach to realize high‐efficiency transmission‐mode meta‐devices to control EM wavefronts, based on hyperbolic metamaterial (HMM) waveguides supporting tailored spoof surface plasmons (SSPs) on their side walls, is proposed. By manipulating the dispersions of SSPs through adjusting the HMM geometrical parameters, the phases of EM waves passing through such waveguides, which enables the design of meta‐devices with desired transmission‐phase profiles for particular wave‐manipulation applications, can be controlled. Microwave experiments are implemented to demonstrate two wave‐control effects based on the mechanism, that is, beam‐deflection and focusing, and a maximum conversion efficiency of 42.9% is achieved for the anomalous refracted beam. By scaling down the HMM meta‐devices, the proposal herein is applicable to optical frequencies and in principle promises significantly raised conversion efficiencies. The scheme herein can offer a higher effective refractive index and more tunable dispersion without using high‐index dielectric materials, and thus can serve as an effective and robust approach to make high‐efficiency transmissive meta‐devices with diversified functionalities. Hyperbolic metamaterial (HMM) meta‐devices are proposed to construct high‐efficiency transmissive metasurfaces for wavefront manipulation over the entire spectral regimes without the requirement of high‐index materials. HMM meta‐devices enable an anomalous refracted beam for linearly polarized and circularly polarized electromagnetic waves with conversion efficiencies of 42.9% in the microwave region and 77.9% in the near infrared region.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.201800081</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5456-9345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2019-01, Vol.13 (1), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2173728598
source Access via Wiley Online Library
subjects Conversion
Devices
Dielectrics
Efficiency
hyperbolic metamaterials
Metamaterials
metasurfaces
Plasmons
Refractivity
Wave fronts
wavefronts
Waveguides
title Hyperbolic Metamaterial Devices for Wavefront Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T22%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Metamaterial%20Devices%20for%20Wavefront%20Manipulation&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Yin,%20Xiang&rft.date=2019-01&rft.volume=13&rft.issue=1&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.201800081&rft_dat=%3Cproquest_cross%3E2173728598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2173728598&rft_id=info:pmid/&rfr_iscdi=true