The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture

The problem of adhesive wear is herein investigated in relation to periodic asperity junction models in the framework of the Archard interpretation suggesting that wear debris formation is the result of asperity fracture. To this aim, the phase field model for fracture is exploited to simulate the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2019-01, Vol.215 (1-2), p.39-48
Hauptverfasser: Carollo, Valerio, Paggi, Marco, Reinoso, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1-2
container_start_page 39
container_title International journal of fracture
container_volume 215
creator Carollo, Valerio
Paggi, Marco
Reinoso, José
description The problem of adhesive wear is herein investigated in relation to periodic asperity junction models in the framework of the Archard interpretation suggesting that wear debris formation is the result of asperity fracture. To this aim, the phase field model for fracture is exploited to simulate the crack pattern leading to debris formation in the asperity junction model. Based on dimensional analysis considerations, the effect of the size of the junction length, the lateral size of the asperity, and the amplitude of the re-entrant corner angles γ and β defined by the junction geometry is examined in the parametric analysis. Results show that two failure modes are expected to occur, one with a crack nucleated at the re-entrant corner γ , and another with a crack nucleated at the re-entrant corner β , depending on the dominant power of the stress-singularity at the two re-entrant corner tips. Steady-state adhesive wear, where the initial asperity junction geometry is reproduced after debris formation, is observed for asperity junctions with γ = 45 ∘ , almost independently of the lateral size of the asperity and of the horizontal projection of the junction length.
doi_str_mv 10.1007/s10704-018-0329-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172721069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172721069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a1696040ccbeb269ad44eb25c092191a49502c1387a66cb18ccb9dcb244820333</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdfTm0WSyLMUXFNzUdchk7jhT2k5N0or_3pQRXLm5D_jOuZdDyC2Hew5gHhIHA4oBrxhIYRmckQmfGcmENvKcTEAazawS9pJcpbQGAGsqNSHtqkOaMvrmm6XsM9J5DJ2PDfVNh6k_Iv1CH-k-DvUGtzTisU99xobWPpU67GguDvuubLTtcVOE-wL70NE80Db6kA8Rr8lF6zcJb377lLw_Pa4WL2z59vy6mC9ZkFxn5rm2GhSEUGMttPWNUmWYBbCCW-6VnYEIXFbGax1qXhXQNqEWSlUCpJRTcjf6lhc-D5iyWw-HuCsnneBGGMFB20LxkQpxSCli6_ax3_r47Ti4U5xujNOVON0pzlKmRIyaVNjdB8Y_5_9FP0Kzd8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172721069</pqid></control><display><type>article</type><title>The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture</title><source>SpringerLink Journals</source><creator>Carollo, Valerio ; Paggi, Marco ; Reinoso, José</creator><creatorcontrib>Carollo, Valerio ; Paggi, Marco ; Reinoso, José</creatorcontrib><description>The problem of adhesive wear is herein investigated in relation to periodic asperity junction models in the framework of the Archard interpretation suggesting that wear debris formation is the result of asperity fracture. To this aim, the phase field model for fracture is exploited to simulate the crack pattern leading to debris formation in the asperity junction model. Based on dimensional analysis considerations, the effect of the size of the junction length, the lateral size of the asperity, and the amplitude of the re-entrant corner angles γ and β defined by the junction geometry is examined in the parametric analysis. Results show that two failure modes are expected to occur, one with a crack nucleated at the re-entrant corner γ , and another with a crack nucleated at the re-entrant corner β , depending on the dominant power of the stress-singularity at the two re-entrant corner tips. Steady-state adhesive wear, where the initial asperity junction geometry is reproduced after debris formation, is observed for asperity junctions with γ = 45 ∘ , almost independently of the lateral size of the asperity and of the horizontal projection of the junction length.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-018-0329-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adhesive wear ; Angles (geometry) ; Asperity ; Automotive Engineering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Computer simulation ; Debris ; Dimensional analysis ; Failure analysis ; Failure modes ; Materials Science ; Mathematical analysis ; Mechanical Engineering ; Original Paper ; Parametric analysis ; Steady state ; Tips ; Wear particles</subject><ispartof>International journal of fracture, 2019-01, Vol.215 (1-2), p.39-48</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a1696040ccbeb269ad44eb25c092191a49502c1387a66cb18ccb9dcb244820333</citedby><cites>FETCH-LOGICAL-c316t-a1696040ccbeb269ad44eb25c092191a49502c1387a66cb18ccb9dcb244820333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-018-0329-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-018-0329-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carollo, Valerio</creatorcontrib><creatorcontrib>Paggi, Marco</creatorcontrib><creatorcontrib>Reinoso, José</creatorcontrib><title>The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The problem of adhesive wear is herein investigated in relation to periodic asperity junction models in the framework of the Archard interpretation suggesting that wear debris formation is the result of asperity fracture. To this aim, the phase field model for fracture is exploited to simulate the crack pattern leading to debris formation in the asperity junction model. Based on dimensional analysis considerations, the effect of the size of the junction length, the lateral size of the asperity, and the amplitude of the re-entrant corner angles γ and β defined by the junction geometry is examined in the parametric analysis. Results show that two failure modes are expected to occur, one with a crack nucleated at the re-entrant corner γ , and another with a crack nucleated at the re-entrant corner β , depending on the dominant power of the stress-singularity at the two re-entrant corner tips. Steady-state adhesive wear, where the initial asperity junction geometry is reproduced after debris formation, is observed for asperity junctions with γ = 45 ∘ , almost independently of the lateral size of the asperity and of the horizontal projection of the junction length.</description><subject>Adhesive wear</subject><subject>Angles (geometry)</subject><subject>Asperity</subject><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Debris</subject><subject>Dimensional analysis</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parametric analysis</subject><subject>Steady state</subject><subject>Tips</subject><subject>Wear particles</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdfTm0WSyLMUXFNzUdchk7jhT2k5N0or_3pQRXLm5D_jOuZdDyC2Hew5gHhIHA4oBrxhIYRmckQmfGcmENvKcTEAazawS9pJcpbQGAGsqNSHtqkOaMvrmm6XsM9J5DJ2PDfVNh6k_Iv1CH-k-DvUGtzTisU99xobWPpU67GguDvuubLTtcVOE-wL70NE80Db6kA8Rr8lF6zcJb377lLw_Pa4WL2z59vy6mC9ZkFxn5rm2GhSEUGMttPWNUmWYBbCCW-6VnYEIXFbGax1qXhXQNqEWSlUCpJRTcjf6lhc-D5iyWw-HuCsnneBGGMFB20LxkQpxSCli6_ax3_r47Ti4U5xujNOVON0pzlKmRIyaVNjdB8Y_5_9FP0Kzd8k</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Carollo, Valerio</creator><creator>Paggi, Marco</creator><creator>Reinoso, José</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture</title><author>Carollo, Valerio ; Paggi, Marco ; Reinoso, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a1696040ccbeb269ad44eb25c092191a49502c1387a66cb18ccb9dcb244820333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesive wear</topic><topic>Angles (geometry)</topic><topic>Asperity</topic><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Debris</topic><topic>Dimensional analysis</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parametric analysis</topic><topic>Steady state</topic><topic>Tips</topic><topic>Wear particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carollo, Valerio</creatorcontrib><creatorcontrib>Paggi, Marco</creatorcontrib><creatorcontrib>Reinoso, José</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carollo, Valerio</au><au>Paggi, Marco</au><au>Reinoso, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>215</volume><issue>1-2</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The problem of adhesive wear is herein investigated in relation to periodic asperity junction models in the framework of the Archard interpretation suggesting that wear debris formation is the result of asperity fracture. To this aim, the phase field model for fracture is exploited to simulate the crack pattern leading to debris formation in the asperity junction model. Based on dimensional analysis considerations, the effect of the size of the junction length, the lateral size of the asperity, and the amplitude of the re-entrant corner angles γ and β defined by the junction geometry is examined in the parametric analysis. Results show that two failure modes are expected to occur, one with a crack nucleated at the re-entrant corner γ , and another with a crack nucleated at the re-entrant corner β , depending on the dominant power of the stress-singularity at the two re-entrant corner tips. Steady-state adhesive wear, where the initial asperity junction geometry is reproduced after debris formation, is observed for asperity junctions with γ = 45 ∘ , almost independently of the lateral size of the asperity and of the horizontal projection of the junction length.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-018-0329-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2019-01, Vol.215 (1-2), p.39-48
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_journals_2172721069
source SpringerLink Journals
subjects Adhesive wear
Angles (geometry)
Asperity
Automotive Engineering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Computer simulation
Debris
Dimensional analysis
Failure analysis
Failure modes
Materials Science
Mathematical analysis
Mechanical Engineering
Original Paper
Parametric analysis
Steady state
Tips
Wear particles
title The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20steady-state%20Archard%20adhesive%20wear%20problem%20revisited%20based%20on%20the%20phase%20field%20approach%20to%20fracture&rft.jtitle=International%20journal%20of%20fracture&rft.au=Carollo,%20Valerio&rft.date=2019-01-01&rft.volume=215&rft.issue=1-2&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-018-0329-0&rft_dat=%3Cproquest_cross%3E2172721069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172721069&rft_id=info:pmid/&rfr_iscdi=true