Synchronization of Phase Oscillators on the Hierarchical Lattice
Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2019-01, Vol.174 (1), p.188-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | Journal of statistical physics |
container_volume | 174 |
creator | Garlaschelli, D. den Hollander, F. Meylahn, J. M. Zeegers, B. |
description | Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a
conjecture
about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a
truncation approximation
that leads to a simplified renormalization transformation; (III) a
rigorous analysis
of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem. |
doi_str_mv | 10.1007/s10955-018-2208-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2172720549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571733726</galeid><sourcerecordid>A571733726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-bc5ddb124ce0ba4862f39f618410fcdacbffb2228198ef5a672bf5fb0331ddc83</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3B8-ok2WyyN0tRKxQqqOeQzSZtynZTk_RQn96UFTzJHAaG_5sZPoRuMdxjAP4QMTSMlYBFSQiIkp2hCWaclE2N6TmaABBSVhyzS3QV4xYAGtGwCXp8Pw56E_zgvlVyfii8Ld42KppiFbXre5V8iEWep40pFs4EFfTGadUXS5WS0-YaXVjVR3Pz26fo8_npY74ol6uX1_lsWWrKWCpbzbquxaTSBlpViZpY2tgaiwqD1Z3SrbUtIUTgRhjLVM1Ja5ltgVLcdVrQKbob9-6D_zqYmOTWH8KQT0qCOeEEWNXk1P2YWqveSDdYn4LSuTqzc9oPxro8nzGOOaWc1BnAI6CDjzEYK_fB7VQ4SgzyZFaOZmU2K09mJcsMGZmYs8PahL9X_od-AE9oe14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172720549</pqid></control><display><type>article</type><title>Synchronization of Phase Oscillators on the Hierarchical Lattice</title><source>SpringerNature Journals</source><creator>Garlaschelli, D. ; den Hollander, F. ; Meylahn, J. M. ; Zeegers, B.</creator><creatorcontrib>Garlaschelli, D. ; den Hollander, F. ; Meylahn, J. M. ; Zeegers, B.</creatorcontrib><description>Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a
conjecture
about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a
truncation approximation
that leads to a simplified renormalization transformation; (III) a
rigorous analysis
of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-018-2208-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brain ; Communities ; Interaction parameters ; Linearity ; Mathematical and Computational Physics ; Neurons ; Oscillators ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Structural hierarchy ; Synchronism ; Theoretical ; Transformations (mathematics)</subject><ispartof>Journal of statistical physics, 2019-01, Vol.174 (1), p.188-218</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-bc5ddb124ce0ba4862f39f618410fcdacbffb2228198ef5a672bf5fb0331ddc83</citedby><cites>FETCH-LOGICAL-c355t-bc5ddb124ce0ba4862f39f618410fcdacbffb2228198ef5a672bf5fb0331ddc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-018-2208-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-018-2208-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Garlaschelli, D.</creatorcontrib><creatorcontrib>den Hollander, F.</creatorcontrib><creatorcontrib>Meylahn, J. M.</creatorcontrib><creatorcontrib>Zeegers, B.</creatorcontrib><title>Synchronization of Phase Oscillators on the Hierarchical Lattice</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a
conjecture
about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a
truncation approximation
that leads to a simplified renormalization transformation; (III) a
rigorous analysis
of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem.</description><subject>Brain</subject><subject>Communities</subject><subject>Interaction parameters</subject><subject>Linearity</subject><subject>Mathematical and Computational Physics</subject><subject>Neurons</subject><subject>Oscillators</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Structural hierarchy</subject><subject>Synchronism</subject><subject>Theoretical</subject><subject>Transformations (mathematics)</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3B8-ok2WyyN0tRKxQqqOeQzSZtynZTk_RQn96UFTzJHAaG_5sZPoRuMdxjAP4QMTSMlYBFSQiIkp2hCWaclE2N6TmaABBSVhyzS3QV4xYAGtGwCXp8Pw56E_zgvlVyfii8Ld42KppiFbXre5V8iEWep40pFs4EFfTGadUXS5WS0-YaXVjVR3Pz26fo8_npY74ol6uX1_lsWWrKWCpbzbquxaTSBlpViZpY2tgaiwqD1Z3SrbUtIUTgRhjLVM1Ja5ltgVLcdVrQKbob9-6D_zqYmOTWH8KQT0qCOeEEWNXk1P2YWqveSDdYn4LSuTqzc9oPxro8nzGOOaWc1BnAI6CDjzEYK_fB7VQ4SgzyZFaOZmU2K09mJcsMGZmYs8PahL9X_od-AE9oe14</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Garlaschelli, D.</creator><creator>den Hollander, F.</creator><creator>Meylahn, J. M.</creator><creator>Zeegers, B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Synchronization of Phase Oscillators on the Hierarchical Lattice</title><author>Garlaschelli, D. ; den Hollander, F. ; Meylahn, J. M. ; Zeegers, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-bc5ddb124ce0ba4862f39f618410fcdacbffb2228198ef5a672bf5fb0331ddc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brain</topic><topic>Communities</topic><topic>Interaction parameters</topic><topic>Linearity</topic><topic>Mathematical and Computational Physics</topic><topic>Neurons</topic><topic>Oscillators</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Structural hierarchy</topic><topic>Synchronism</topic><topic>Theoretical</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garlaschelli, D.</creatorcontrib><creatorcontrib>den Hollander, F.</creatorcontrib><creatorcontrib>Meylahn, J. M.</creatorcontrib><creatorcontrib>Zeegers, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garlaschelli, D.</au><au>den Hollander, F.</au><au>Meylahn, J. M.</au><au>Zeegers, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of Phase Oscillators on the Hierarchical Lattice</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>174</volume><issue>1</issue><spage>188</spage><epage>218</epage><pages>188-218</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a
conjecture
about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a
truncation approximation
that leads to a simplified renormalization transformation; (III) a
rigorous analysis
of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-018-2208-5</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2019-01, Vol.174 (1), p.188-218 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2172720549 |
source | SpringerNature Journals |
subjects | Brain Communities Interaction parameters Linearity Mathematical and Computational Physics Neurons Oscillators Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Structural hierarchy Synchronism Theoretical Transformations (mathematics) |
title | Synchronization of Phase Oscillators on the Hierarchical Lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20Phase%20Oscillators%20on%20the%20Hierarchical%20Lattice&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Garlaschelli,%20D.&rft.date=2019-01-01&rft.volume=174&rft.issue=1&rft.spage=188&rft.epage=218&rft.pages=188-218&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-018-2208-5&rft_dat=%3Cgale_proqu%3EA571733726%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172720549&rft_id=info:pmid/&rft_galeid=A571733726&rfr_iscdi=true |