Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma

The development of new, more refractory heat-resistant materials for gas-turbine engines is one of most important problems of modern materials science. This is associated with the fact that nickel superalloys currently used for this purpose have a lower melting point of ~1400°C, which limits their o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of non-ferrous metals 2018-11, Vol.59 (6), p.671-676
Hauptverfasser: Popovich, A. A., Razumov, N. G., Grigoriev, A. V., Samokhin, A. V., Sufiiarov, V. Sh, Goncharov, I. S., Fadeev, A. A., Sinaiskii, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 676
container_issue 6
container_start_page 671
container_title Russian journal of non-ferrous metals
container_volume 59
creator Popovich, A. A.
Razumov, N. G.
Grigoriev, A. V.
Samokhin, A. V.
Sufiiarov, V. Sh
Goncharov, I. S.
Fadeev, A. A.
Sinaiskii, M. A.
description The development of new, more refractory heat-resistant materials for gas-turbine engines is one of most important problems of modern materials science. This is associated with the fact that nickel superalloys currently used for this purpose have a lower melting point of ~1400°C, which limits their own maximal working temperature by a range of 1100–1150°C. The Ni alloys can be replaced by natural composites, in which refractory metals are a matrix, while their silicides are intermetallic hardeners. Only three “refractory metal–silicon” binary systems manifest stability to the Me 5 Si 3 silicide, notably, Nb 5 Si 3 , Re 5 Si 3 , and W 5 Si 3 . From the viewpoint of a combination of a high melting point and a low density, the Nb 5 Si 3 compound is optimal among other silicides. The use of alloys of the Nb–Si system in additive manufacturing machines is of considerable interest. This work presents the results of experimental investigations into the treatment of the Nb–16 at % Si powder fabricated using mechanical alloying of elemental Nb and Si powders in the thermal plasma flux. The Nb–16Si alloy powder is fabricated by the mechanical alloying of powders of pure elements in a Fritsch Pulverisette 4 planetary mill. The powder spheroidization is performed in a plasma installation based on a discharge vortex-stabilized electric-arc thermal plasma generator. Based on the results of experimental investigations, the principal possibility to perform the plasma spheroidization of particles of the Nb–16Si alloy prepared by mechanical alloying is shown. It is shown that the surface of spheroidized particles is rough and reflects the cast material structure. Three phase components Nb 5 Si 3 , Nb 3 Si, and Nb ss having different optical contrast are revealed in microslices, which is confirmed by X-ray phase analysis.
doi_str_mv 10.3103/S1067821218060160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172720366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172720366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-751ef9bfe386c1559dfa887a2f4ee436878d2f173d058368d580a5d27756f72b3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhgdRsFYfwF3A9WguzWWWpbYq1Au0grshM0mmKdNJTaZKXfkOLnw_n8SUEVyIq3MO5__-n3OS5BTBc4IguZghyLjACCMBGUQM7iU9lJFBmnH4tB_7uE53-8PkKIQlhJRmNOslnxNZeFvK1roGOAPahQZ3xdf7B2IzC4Z17bbgwb0q7YFxHgyVsq190WCuy0XjaldZHUCxBbdxlk00qjvINhWQjQKz9UJ7Z5V96yJsA8a1LtuYmQ59CS5tiKCvomMUriL-UMuwksfJgZF10Cc_tZ88Tsbz0XU6vb-6GQ2naUlo1qacIm2ywmgiWIniTcpIIbjEZqD1gDDBhcIGcaIgFXFUVEBJFeacMsNxQfrJWee79u55o0ObL93GNzEyx4hjjiFhLKpQpyq9C8Frk6-9XUm_zRHMd__P__w_MrhjQtQ2lfa_zv9D3xlziLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172720366</pqid></control><display><type>article</type><title>Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma</title><source>SpringerLink Journals - AutoHoldings</source><creator>Popovich, A. A. ; Razumov, N. G. ; Grigoriev, A. V. ; Samokhin, A. V. ; Sufiiarov, V. Sh ; Goncharov, I. S. ; Fadeev, A. A. ; Sinaiskii, M. A.</creator><creatorcontrib>Popovich, A. A. ; Razumov, N. G. ; Grigoriev, A. V. ; Samokhin, A. V. ; Sufiiarov, V. Sh ; Goncharov, I. S. ; Fadeev, A. A. ; Sinaiskii, M. A.</creatorcontrib><description>The development of new, more refractory heat-resistant materials for gas-turbine engines is one of most important problems of modern materials science. This is associated with the fact that nickel superalloys currently used for this purpose have a lower melting point of ~1400°C, which limits their own maximal working temperature by a range of 1100–1150°C. The Ni alloys can be replaced by natural composites, in which refractory metals are a matrix, while their silicides are intermetallic hardeners. Only three “refractory metal–silicon” binary systems manifest stability to the Me 5 Si 3 silicide, notably, Nb 5 Si 3 , Re 5 Si 3 , and W 5 Si 3 . From the viewpoint of a combination of a high melting point and a low density, the Nb 5 Si 3 compound is optimal among other silicides. The use of alloys of the Nb–Si system in additive manufacturing machines is of considerable interest. This work presents the results of experimental investigations into the treatment of the Nb–16 at % Si powder fabricated using mechanical alloying of elemental Nb and Si powders in the thermal plasma flux. The Nb–16Si alloy powder is fabricated by the mechanical alloying of powders of pure elements in a Fritsch Pulverisette 4 planetary mill. The powder spheroidization is performed in a plasma installation based on a discharge vortex-stabilized electric-arc thermal plasma generator. Based on the results of experimental investigations, the principal possibility to perform the plasma spheroidization of particles of the Nb–16Si alloy prepared by mechanical alloying is shown. It is shown that the surface of spheroidized particles is rough and reflects the cast material structure. Three phase components Nb 5 Si 3 , Nb 3 Si, and Nb ss having different optical contrast are revealed in microslices, which is confirmed by X-ray phase analysis.</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821218060160</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloy development ; Alloy powders ; Alloy systems ; Alloying elements ; Alloys ; Arc resistance heating ; Binary systems ; Ceramic ; Chemistry and Materials Science ; Composite Materials ; Densification ; Electric arcs ; Electric discharges ; Gas turbine engines ; Hardeners ; Heat resistant materials ; Intermetallic compounds ; Materials Science ; Mechanical alloying ; Melting points ; Metallic Materials ; Nickel base alloys ; Planetary mills ; Plasma ; Plasma generators ; Refractory ; Refractory materials ; Refractory metals ; Silicides ; Silicon ; Thermal plasmas</subject><ispartof>Russian journal of non-ferrous metals, 2018-11, Vol.59 (6), p.671-676</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-751ef9bfe386c1559dfa887a2f4ee436878d2f173d058368d580a5d27756f72b3</citedby><cites>FETCH-LOGICAL-c359t-751ef9bfe386c1559dfa887a2f4ee436878d2f173d058368d580a5d27756f72b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821218060160$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821218060160$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Popovich, A. A.</creatorcontrib><creatorcontrib>Razumov, N. G.</creatorcontrib><creatorcontrib>Grigoriev, A. V.</creatorcontrib><creatorcontrib>Samokhin, A. V.</creatorcontrib><creatorcontrib>Sufiiarov, V. Sh</creatorcontrib><creatorcontrib>Goncharov, I. S.</creatorcontrib><creatorcontrib>Fadeev, A. A.</creatorcontrib><creatorcontrib>Sinaiskii, M. A.</creatorcontrib><title>Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The development of new, more refractory heat-resistant materials for gas-turbine engines is one of most important problems of modern materials science. This is associated with the fact that nickel superalloys currently used for this purpose have a lower melting point of ~1400°C, which limits their own maximal working temperature by a range of 1100–1150°C. The Ni alloys can be replaced by natural composites, in which refractory metals are a matrix, while their silicides are intermetallic hardeners. Only three “refractory metal–silicon” binary systems manifest stability to the Me 5 Si 3 silicide, notably, Nb 5 Si 3 , Re 5 Si 3 , and W 5 Si 3 . From the viewpoint of a combination of a high melting point and a low density, the Nb 5 Si 3 compound is optimal among other silicides. The use of alloys of the Nb–Si system in additive manufacturing machines is of considerable interest. This work presents the results of experimental investigations into the treatment of the Nb–16 at % Si powder fabricated using mechanical alloying of elemental Nb and Si powders in the thermal plasma flux. The Nb–16Si alloy powder is fabricated by the mechanical alloying of powders of pure elements in a Fritsch Pulverisette 4 planetary mill. The powder spheroidization is performed in a plasma installation based on a discharge vortex-stabilized electric-arc thermal plasma generator. Based on the results of experimental investigations, the principal possibility to perform the plasma spheroidization of particles of the Nb–16Si alloy prepared by mechanical alloying is shown. It is shown that the surface of spheroidized particles is rough and reflects the cast material structure. Three phase components Nb 5 Si 3 , Nb 3 Si, and Nb ss having different optical contrast are revealed in microslices, which is confirmed by X-ray phase analysis.</description><subject>Alloy development</subject><subject>Alloy powders</subject><subject>Alloy systems</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Arc resistance heating</subject><subject>Binary systems</subject><subject>Ceramic</subject><subject>Chemistry and Materials Science</subject><subject>Composite Materials</subject><subject>Densification</subject><subject>Electric arcs</subject><subject>Electric discharges</subject><subject>Gas turbine engines</subject><subject>Hardeners</subject><subject>Heat resistant materials</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Melting points</subject><subject>Metallic Materials</subject><subject>Nickel base alloys</subject><subject>Planetary mills</subject><subject>Plasma</subject><subject>Plasma generators</subject><subject>Refractory</subject><subject>Refractory materials</subject><subject>Refractory metals</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Thermal plasmas</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhgdRsFYfwF3A9WguzWWWpbYq1Au0grshM0mmKdNJTaZKXfkOLnw_n8SUEVyIq3MO5__-n3OS5BTBc4IguZghyLjACCMBGUQM7iU9lJFBmnH4tB_7uE53-8PkKIQlhJRmNOslnxNZeFvK1roGOAPahQZ3xdf7B2IzC4Z17bbgwb0q7YFxHgyVsq190WCuy0XjaldZHUCxBbdxlk00qjvINhWQjQKz9UJ7Z5V96yJsA8a1LtuYmQ59CS5tiKCvomMUriL-UMuwksfJgZF10Cc_tZ88Tsbz0XU6vb-6GQ2naUlo1qacIm2ywmgiWIniTcpIIbjEZqD1gDDBhcIGcaIgFXFUVEBJFeacMsNxQfrJWee79u55o0ObL93GNzEyx4hjjiFhLKpQpyq9C8Frk6-9XUm_zRHMd__P__w_MrhjQtQ2lfa_zv9D3xlziLk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Popovich, A. A.</creator><creator>Razumov, N. G.</creator><creator>Grigoriev, A. V.</creator><creator>Samokhin, A. V.</creator><creator>Sufiiarov, V. Sh</creator><creator>Goncharov, I. S.</creator><creator>Fadeev, A. A.</creator><creator>Sinaiskii, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20181101</creationdate><title>Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma</title><author>Popovich, A. A. ; Razumov, N. G. ; Grigoriev, A. V. ; Samokhin, A. V. ; Sufiiarov, V. Sh ; Goncharov, I. S. ; Fadeev, A. A. ; Sinaiskii, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-751ef9bfe386c1559dfa887a2f4ee436878d2f173d058368d580a5d27756f72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloy development</topic><topic>Alloy powders</topic><topic>Alloy systems</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Arc resistance heating</topic><topic>Binary systems</topic><topic>Ceramic</topic><topic>Chemistry and Materials Science</topic><topic>Composite Materials</topic><topic>Densification</topic><topic>Electric arcs</topic><topic>Electric discharges</topic><topic>Gas turbine engines</topic><topic>Hardeners</topic><topic>Heat resistant materials</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Melting points</topic><topic>Metallic Materials</topic><topic>Nickel base alloys</topic><topic>Planetary mills</topic><topic>Plasma</topic><topic>Plasma generators</topic><topic>Refractory</topic><topic>Refractory materials</topic><topic>Refractory metals</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Thermal plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popovich, A. A.</creatorcontrib><creatorcontrib>Razumov, N. G.</creatorcontrib><creatorcontrib>Grigoriev, A. V.</creatorcontrib><creatorcontrib>Samokhin, A. V.</creatorcontrib><creatorcontrib>Sufiiarov, V. Sh</creatorcontrib><creatorcontrib>Goncharov, I. S.</creatorcontrib><creatorcontrib>Fadeev, A. A.</creatorcontrib><creatorcontrib>Sinaiskii, M. A.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popovich, A. A.</au><au>Razumov, N. G.</au><au>Grigoriev, A. V.</au><au>Samokhin, A. V.</au><au>Sufiiarov, V. Sh</au><au>Goncharov, I. S.</au><au>Fadeev, A. A.</au><au>Sinaiskii, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>59</volume><issue>6</issue><spage>671</spage><epage>676</epage><pages>671-676</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The development of new, more refractory heat-resistant materials for gas-turbine engines is one of most important problems of modern materials science. This is associated with the fact that nickel superalloys currently used for this purpose have a lower melting point of ~1400°C, which limits their own maximal working temperature by a range of 1100–1150°C. The Ni alloys can be replaced by natural composites, in which refractory metals are a matrix, while their silicides are intermetallic hardeners. Only three “refractory metal–silicon” binary systems manifest stability to the Me 5 Si 3 silicide, notably, Nb 5 Si 3 , Re 5 Si 3 , and W 5 Si 3 . From the viewpoint of a combination of a high melting point and a low density, the Nb 5 Si 3 compound is optimal among other silicides. The use of alloys of the Nb–Si system in additive manufacturing machines is of considerable interest. This work presents the results of experimental investigations into the treatment of the Nb–16 at % Si powder fabricated using mechanical alloying of elemental Nb and Si powders in the thermal plasma flux. The Nb–16Si alloy powder is fabricated by the mechanical alloying of powders of pure elements in a Fritsch Pulverisette 4 planetary mill. The powder spheroidization is performed in a plasma installation based on a discharge vortex-stabilized electric-arc thermal plasma generator. Based on the results of experimental investigations, the principal possibility to perform the plasma spheroidization of particles of the Nb–16Si alloy prepared by mechanical alloying is shown. It is shown that the surface of spheroidized particles is rough and reflects the cast material structure. Three phase components Nb 5 Si 3 , Nb 3 Si, and Nb ss having different optical contrast are revealed in microslices, which is confirmed by X-ray phase analysis.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1067821218060160</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1067-8212
ispartof Russian journal of non-ferrous metals, 2018-11, Vol.59 (6), p.671-676
issn 1067-8212
1934-970X
language eng
recordid cdi_proquest_journals_2172720366
source SpringerLink Journals - AutoHoldings
subjects Alloy development
Alloy powders
Alloy systems
Alloying elements
Alloys
Arc resistance heating
Binary systems
Ceramic
Chemistry and Materials Science
Composite Materials
Densification
Electric arcs
Electric discharges
Gas turbine engines
Hardeners
Heat resistant materials
Intermetallic compounds
Materials Science
Mechanical alloying
Melting points
Metallic Materials
Nickel base alloys
Planetary mills
Plasma
Plasma generators
Refractory
Refractory materials
Refractory metals
Silicides
Silicon
Thermal plasmas
title Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20the%20Nb%E2%80%9316Si%20Alloy%20Powder%20for%20Additive%20Technologies%20by%20Mechanical%20Alloying%20and%20Spheroidization%20in%20Electric-Arc%20Discharge%20Thermal%20Plasma&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Popovich,%20A.%20A.&rft.date=2018-11-01&rft.volume=59&rft.issue=6&rft.spage=671&rft.epage=676&rft.pages=671-676&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821218060160&rft_dat=%3Cproquest_cross%3E2172720366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172720366&rft_id=info:pmid/&rfr_iscdi=true