Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model
Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algo...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2019-03, Vol.42 (3), p.710-718 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 718 |
---|---|
container_issue | 3 |
container_start_page | 710 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 42 |
creator | Liu, Qiaobin Shi, Wenku Chen, Zhiyong |
description | Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts. |
doi_str_mv | 10.1111/ffe.12945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172514092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172514092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmNw4A0iceKwrfnXNEc0rYA0iQtI3Kq0dSBTu5SkHRonHoFn5EkIK1d8sS3__Nn6ELokyZzEWBgDc0IVF0doQniazGiqxDGaZFKkMymy51N0FsImSUjKGZsgn-vevgyAG2sAdx5qW_XWbbFxHu9s6fWhs8E1Y-WHsgSPSx2gxrHvtNct9OC_P79c19vWfsRBGLrO-R7voOqjUKurV7sF3LoamnN0YnQT4OIvT9FTvnpc3s3WD7f3y5v1rKJKivisZpoxkSY8yxTNUp4xZqoqkYpzQhiURgqqhCxrCiBqUwtuZAWcSgUqK9kUXY26nXdvA4S-2LjBb-PJghJJBeGJopG6HqnKuxA8mKLzttV-X5Ck-LW0iJYWB0sjuxjZd9vA_n-wyPPVuPEDPaF6eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172514092</pqid></control><display><type>article</type><title>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</creator><creatorcontrib>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</creatorcontrib><description>Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.12945</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Back propagation ; Back propagation networks ; back propagation neural network ; Computer simulation ; Fatigue life ; Genetic algorithms ; Life prediction ; Materials fatigue ; modified gravitational search algorithm ; Neural networks ; Parameter modification ; Regression models ; Rockwell hardness ; Rubber ; rubber fatigue ; Search algorithms ; Simulated annealing ; support vector machine ; Support vector machines ; Vibration measurement</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2019-03, Vol.42 (3), p.710-718</ispartof><rights>2018 Wiley Publishing Ltd.</rights><rights>2019 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</citedby><cites>FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</cites><orcidid>0000-0002-5159-0835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.12945$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.12945$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Qiaobin</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><title>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</title><title>Fatigue & fracture of engineering materials & structures</title><description>Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>back propagation neural network</subject><subject>Computer simulation</subject><subject>Fatigue life</subject><subject>Genetic algorithms</subject><subject>Life prediction</subject><subject>Materials fatigue</subject><subject>modified gravitational search algorithm</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Regression models</subject><subject>Rockwell hardness</subject><subject>Rubber</subject><subject>rubber fatigue</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Vibration measurement</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9OwzAMxiMEEmNw4A0iceKwrfnXNEc0rYA0iQtI3Kq0dSBTu5SkHRonHoFn5EkIK1d8sS3__Nn6ELokyZzEWBgDc0IVF0doQniazGiqxDGaZFKkMymy51N0FsImSUjKGZsgn-vevgyAG2sAdx5qW_XWbbFxHu9s6fWhs8E1Y-WHsgSPSx2gxrHvtNct9OC_P79c19vWfsRBGLrO-R7voOqjUKurV7sF3LoamnN0YnQT4OIvT9FTvnpc3s3WD7f3y5v1rKJKivisZpoxkSY8yxTNUp4xZqoqkYpzQhiURgqqhCxrCiBqUwtuZAWcSgUqK9kUXY26nXdvA4S-2LjBb-PJghJJBeGJopG6HqnKuxA8mKLzttV-X5Ck-LW0iJYWB0sjuxjZd9vA_n-wyPPVuPEDPaF6eQ</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Liu, Qiaobin</creator><creator>Shi, Wenku</creator><creator>Chen, Zhiyong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5159-0835</orcidid></search><sort><creationdate>201903</creationdate><title>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</title><author>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>back propagation neural network</topic><topic>Computer simulation</topic><topic>Fatigue life</topic><topic>Genetic algorithms</topic><topic>Life prediction</topic><topic>Materials fatigue</topic><topic>modified gravitational search algorithm</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Regression models</topic><topic>Rockwell hardness</topic><topic>Rubber</topic><topic>rubber fatigue</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiaobin</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiaobin</au><au>Shi, Wenku</au><au>Chen, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2019-03</date><risdate>2019</risdate><volume>42</volume><issue>3</issue><spage>710</spage><epage>718</epage><pages>710-718</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.12945</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5159-0835</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2019-03, Vol.42 (3), p.710-718 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2172514092 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Back propagation Back propagation networks back propagation neural network Computer simulation Fatigue life Genetic algorithms Life prediction Materials fatigue modified gravitational search algorithm Neural networks Parameter modification Regression models Rockwell hardness Rubber rubber fatigue Search algorithms Simulated annealing support vector machine Support vector machines Vibration measurement |
title | Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20life%20prediction%20for%20vibration%20isolation%20rubber%20based%20on%20parameter%E2%80%90optimized%20support%20vector%20machine%20model&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Liu,%20Qiaobin&rft.date=2019-03&rft.volume=42&rft.issue=3&rft.spage=710&rft.epage=718&rft.pages=710-718&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.12945&rft_dat=%3Cproquest_cross%3E2172514092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172514092&rft_id=info:pmid/&rfr_iscdi=true |