Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model

Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2019-03, Vol.42 (3), p.710-718
Hauptverfasser: Liu, Qiaobin, Shi, Wenku, Chen, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 3
container_start_page 710
container_title Fatigue & fracture of engineering materials & structures
container_volume 42
creator Liu, Qiaobin
Shi, Wenku
Chen, Zhiyong
description Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.
doi_str_mv 10.1111/ffe.12945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172514092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172514092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmNw4A0iceKwrfnXNEc0rYA0iQtI3Kq0dSBTu5SkHRonHoFn5EkIK1d8sS3__Nn6ELokyZzEWBgDc0IVF0doQniazGiqxDGaZFKkMymy51N0FsImSUjKGZsgn-vevgyAG2sAdx5qW_XWbbFxHu9s6fWhs8E1Y-WHsgSPSx2gxrHvtNct9OC_P79c19vWfsRBGLrO-R7voOqjUKurV7sF3LoamnN0YnQT4OIvT9FTvnpc3s3WD7f3y5v1rKJKivisZpoxkSY8yxTNUp4xZqoqkYpzQhiURgqqhCxrCiBqUwtuZAWcSgUqK9kUXY26nXdvA4S-2LjBb-PJghJJBeGJopG6HqnKuxA8mKLzttV-X5Ck-LW0iJYWB0sjuxjZd9vA_n-wyPPVuPEDPaF6eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172514092</pqid></control><display><type>article</type><title>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</creator><creatorcontrib>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</creatorcontrib><description>Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.12945</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Back propagation ; Back propagation networks ; back propagation neural network ; Computer simulation ; Fatigue life ; Genetic algorithms ; Life prediction ; Materials fatigue ; modified gravitational search algorithm ; Neural networks ; Parameter modification ; Regression models ; Rockwell hardness ; Rubber ; rubber fatigue ; Search algorithms ; Simulated annealing ; support vector machine ; Support vector machines ; Vibration measurement</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2019-03, Vol.42 (3), p.710-718</ispartof><rights>2018 Wiley Publishing Ltd.</rights><rights>2019 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</citedby><cites>FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</cites><orcidid>0000-0002-5159-0835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.12945$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.12945$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Qiaobin</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><title>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>back propagation neural network</subject><subject>Computer simulation</subject><subject>Fatigue life</subject><subject>Genetic algorithms</subject><subject>Life prediction</subject><subject>Materials fatigue</subject><subject>modified gravitational search algorithm</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Regression models</subject><subject>Rockwell hardness</subject><subject>Rubber</subject><subject>rubber fatigue</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Vibration measurement</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9OwzAMxiMEEmNw4A0iceKwrfnXNEc0rYA0iQtI3Kq0dSBTu5SkHRonHoFn5EkIK1d8sS3__Nn6ELokyZzEWBgDc0IVF0doQniazGiqxDGaZFKkMymy51N0FsImSUjKGZsgn-vevgyAG2sAdx5qW_XWbbFxHu9s6fWhs8E1Y-WHsgSPSx2gxrHvtNct9OC_P79c19vWfsRBGLrO-R7voOqjUKurV7sF3LoamnN0YnQT4OIvT9FTvnpc3s3WD7f3y5v1rKJKivisZpoxkSY8yxTNUp4xZqoqkYpzQhiURgqqhCxrCiBqUwtuZAWcSgUqK9kUXY26nXdvA4S-2LjBb-PJghJJBeGJopG6HqnKuxA8mKLzttV-X5Ck-LW0iJYWB0sjuxjZd9vA_n-wyPPVuPEDPaF6eQ</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Liu, Qiaobin</creator><creator>Shi, Wenku</creator><creator>Chen, Zhiyong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5159-0835</orcidid></search><sort><creationdate>201903</creationdate><title>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</title><author>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-75a3a3356048892864833fcc07944113ebf752957bd2ee5dfd54f7ce4279e98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>back propagation neural network</topic><topic>Computer simulation</topic><topic>Fatigue life</topic><topic>Genetic algorithms</topic><topic>Life prediction</topic><topic>Materials fatigue</topic><topic>modified gravitational search algorithm</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Regression models</topic><topic>Rockwell hardness</topic><topic>Rubber</topic><topic>rubber fatigue</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiaobin</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiaobin</au><au>Shi, Wenku</au><au>Chen, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2019-03</date><risdate>2019</risdate><volume>42</volume><issue>3</issue><spage>710</spage><epage>718</epage><pages>710-718</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was trained based on the experimental fatigue data of vibration isolation rubber materials. For comparison, the standard genetic algorithm, the standard particle swarm algorithm, and the standard simulated annealing algorithm are also implemented. Moreover, a back propagation neural network regression model is applied to the life prediction, with the conclusion that the prediction accuracy and the efficiency of MGSA are better than those of extant methods. This work can provide reference for further fatigue life prediction and structural improvement of rubber parts.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.12945</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5159-0835</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2019-03, Vol.42 (3), p.710-718
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2172514092
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Back propagation
Back propagation networks
back propagation neural network
Computer simulation
Fatigue life
Genetic algorithms
Life prediction
Materials fatigue
modified gravitational search algorithm
Neural networks
Parameter modification
Regression models
Rockwell hardness
Rubber
rubber fatigue
Search algorithms
Simulated annealing
support vector machine
Support vector machines
Vibration measurement
title Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20life%20prediction%20for%20vibration%20isolation%20rubber%20based%20on%20parameter%E2%80%90optimized%20support%20vector%20machine%20model&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Liu,%20Qiaobin&rft.date=2019-03&rft.volume=42&rft.issue=3&rft.spage=710&rft.epage=718&rft.pages=710-718&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.12945&rft_dat=%3Cproquest_cross%3E2172514092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172514092&rft_id=info:pmid/&rfr_iscdi=true