The influence of low‐plasticity burnishing process on the fatigue life of friction‐stir‐processed Al 7075‐T6 samples

The effects of low‐plasticity burnishing (LPB) on the fatigue life of friction‐stir‐processed (FSP) Al 7075‐T6 plates were examined experimentally and numerically. Aluminum samples were taken from plates to test fatigue response in the presence of heat‐affected zone (HAZ) at different loading magnit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2019-03, Vol.42 (3), p.764-772
Hauptverfasser: Hassanifard, Soran, Mousavi, Hojjat, Varvani‐Farahani, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of low‐plasticity burnishing (LPB) on the fatigue life of friction‐stir‐processed (FSP) Al 7075‐T6 plates were examined experimentally and numerically. Aluminum samples were taken from plates to test fatigue response in the presence of heat‐affected zone (HAZ) at different loading magnitudes. Finite element method was employed to numerically evaluate fatigue life of FSPed samples by means of the Smith–Watson–Topper (SWT) model. Through numerical analysis, the FSP and its cooling procedure were modelled on the basis of the arbitrary Lagrangian–Eulerian technique, and then, the effect of the LPB to assess fatigue response of samples was examined. Aluminum samples undergoing friction‐stir process presented lower‐fatigue life as stresses were highly concentrated within FSP regions. Involvement of LPB regained fatigue durability through compressive residual stress induced on the aluminum samples. The higher applied force over the LPB promoted compressive residual stress on the sample surface and improved fatigue life of samples. The predicted life results were found twice more in magnitude than those of experimentally obtained.
ISSN:8756-758X
1460-2695
DOI:10.1111/ffe.12950