Drivers of community attachment: an interactive analysis

In this research, we will investigate several different approaches and methods to displaying multivariate data. Emphasis will be placed on end-user-customization tools and flexibility in dynamic and interactive displays. Specifically, we will highlight the use of motion charts using Markus Gesmann’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2019-12, Vol.34 (4), p.1591-1611
1. Verfasser: Orth, Jessica M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1611
container_issue 4
container_start_page 1591
container_title Computational statistics
container_volume 34
creator Orth, Jessica M.
description In this research, we will investigate several different approaches and methods to displaying multivariate data. Emphasis will be placed on end-user-customization tools and flexibility in dynamic and interactive displays. Specifically, we will highlight the use of motion charts using Markus Gesmann’s googleVis package in R. We will demonstrate the visualization of time-series data and also the results of multidimensional scaling and principal component analysis using this tool. The goals of these displays are ease of usability and interpretation, dynamic customization options, and the ability to display multivariate data in a meaningful way. In addition we will explore partial least squares path modeling using data collected from the Knight Foundation and Gallup during the years 2008–2010 to illustrate the attachment of people to their communities in a new and innovative way.
doi_str_mv 10.1007/s00180-018-00862-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172483861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172483861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f08404d2597b3481b7891ad26bf8b044fbee59c44a06d2b8e8c148e81f176ba3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMkmaz3qT-hYIXPYckTXRLd7cmqbDf3ugK3ry8YeD3HjOPkHOESwSorxIAKqBFKICSjI4HZIYSOW3kQh2SGTSCUwGSHZOTlDYAjNUMZ0TdxvbTx1QNoXJD1-37No-Vydm49873-boyfdX22UfjciHLarZjatMpOQpmm_zZ75yT1_u7l-UjXT0_PC1vVtRxbDJVAZQAsWaLprZcKLS1atCsmbRBWRAiWO8XjRPCgFwzq7xyKIpiwFpaw-fkYsrdxeFj71PWm2EfyxFJM6yZUFyVN-eETZSLQ0rRB72LbWfiqBH0d0N6akgX0T8N6bGY-GRKBe7ffPyL_sf1BXMxaPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172483861</pqid></control><display><type>article</type><title>Drivers of community attachment: an interactive analysis</title><source>SpringerNature Journals</source><creator>Orth, Jessica M.</creator><creatorcontrib>Orth, Jessica M.</creatorcontrib><description>In this research, we will investigate several different approaches and methods to displaying multivariate data. Emphasis will be placed on end-user-customization tools and flexibility in dynamic and interactive displays. Specifically, we will highlight the use of motion charts using Markus Gesmann’s googleVis package in R. We will demonstrate the visualization of time-series data and also the results of multidimensional scaling and principal component analysis using this tool. The goals of these displays are ease of usability and interpretation, dynamic customization options, and the ability to display multivariate data in a meaningful way. In addition we will explore partial least squares path modeling using data collected from the Knight Foundation and Gallup during the years 2008–2010 to illustrate the attachment of people to their communities in a new and innovative way.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-018-00862-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Multivariate analysis ; Original Paper ; Principal components analysis ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistics ; Time series</subject><ispartof>Computational statistics, 2019-12, Vol.34 (4), p.1591-1611</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Computational Statistics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f08404d2597b3481b7891ad26bf8b044fbee59c44a06d2b8e8c148e81f176ba3</citedby><cites>FETCH-LOGICAL-c319t-8f08404d2597b3481b7891ad26bf8b044fbee59c44a06d2b8e8c148e81f176ba3</cites><orcidid>0000-0002-9747-6544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-018-00862-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-018-00862-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Orth, Jessica M.</creatorcontrib><title>Drivers of community attachment: an interactive analysis</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>In this research, we will investigate several different approaches and methods to displaying multivariate data. Emphasis will be placed on end-user-customization tools and flexibility in dynamic and interactive displays. Specifically, we will highlight the use of motion charts using Markus Gesmann’s googleVis package in R. We will demonstrate the visualization of time-series data and also the results of multidimensional scaling and principal component analysis using this tool. The goals of these displays are ease of usability and interpretation, dynamic customization options, and the ability to display multivariate data in a meaningful way. In addition we will explore partial least squares path modeling using data collected from the Knight Foundation and Gallup during the years 2008–2010 to illustrate the attachment of people to their communities in a new and innovative way.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Original Paper</subject><subject>Principal components analysis</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Time series</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMkmaz3qT-hYIXPYckTXRLd7cmqbDf3ugK3ry8YeD3HjOPkHOESwSorxIAKqBFKICSjI4HZIYSOW3kQh2SGTSCUwGSHZOTlDYAjNUMZ0TdxvbTx1QNoXJD1-37No-Vydm49873-boyfdX22UfjciHLarZjatMpOQpmm_zZ75yT1_u7l-UjXT0_PC1vVtRxbDJVAZQAsWaLprZcKLS1atCsmbRBWRAiWO8XjRPCgFwzq7xyKIpiwFpaw-fkYsrdxeFj71PWm2EfyxFJM6yZUFyVN-eETZSLQ0rRB72LbWfiqBH0d0N6akgX0T8N6bGY-GRKBe7ffPyL_sf1BXMxaPk</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Orth, Jessica M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9747-6544</orcidid></search><sort><creationdate>20191201</creationdate><title>Drivers of community attachment: an interactive analysis</title><author>Orth, Jessica M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f08404d2597b3481b7891ad26bf8b044fbee59c44a06d2b8e8c148e81f176ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Original Paper</topic><topic>Principal components analysis</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orth, Jessica M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orth, Jessica M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers of community attachment: an interactive analysis</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>1591</spage><epage>1611</epage><pages>1591-1611</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>In this research, we will investigate several different approaches and methods to displaying multivariate data. Emphasis will be placed on end-user-customization tools and flexibility in dynamic and interactive displays. Specifically, we will highlight the use of motion charts using Markus Gesmann’s googleVis package in R. We will demonstrate the visualization of time-series data and also the results of multidimensional scaling and principal component analysis using this tool. The goals of these displays are ease of usability and interpretation, dynamic customization options, and the ability to display multivariate data in a meaningful way. In addition we will explore partial least squares path modeling using data collected from the Knight Foundation and Gallup during the years 2008–2010 to illustrate the attachment of people to their communities in a new and innovative way.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-018-00862-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9747-6544</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2019-12, Vol.34 (4), p.1591-1611
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_journals_2172483861
source SpringerNature Journals
subjects Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Multivariate analysis
Original Paper
Principal components analysis
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
Time series
title Drivers of community attachment: an interactive analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20of%20community%20attachment:%20an%20interactive%20analysis&rft.jtitle=Computational%20statistics&rft.au=Orth,%20Jessica%20M.&rft.date=2019-12-01&rft.volume=34&rft.issue=4&rft.spage=1591&rft.epage=1611&rft.pages=1591-1611&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-018-00862-y&rft_dat=%3Cproquest_cross%3E2172483861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172483861&rft_id=info:pmid/&rfr_iscdi=true