An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance
It is known that operator splitting methods based on forward–backward splitting, Douglas–Rachford splitting, and Davis–Yin splitting decompose difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an object...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2019-05, Vol.181 (2), p.567-587 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 2 |
container_start_page | 567 |
container_title | Journal of optimization theory and applications |
container_volume | 181 |
creator | Liu, Yanli Yin, Wotao |
description | It is known that operator splitting methods based on forward–backward splitting, Douglas–Rachford splitting, and Davis–Yin splitting decompose difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function), whose gradient descent iteration under a variable metric coincides with Davis–Yin splitting iteration. This result generalizes the Moreau envelope for proximal-point iteration and the envelopes for forward–backward splitting and Douglas–Rachford splitting iterations identified by Patrinos, Stella, and Themelis. Based on the new envelope and the stable–center manifold theorem, we further show that, when forward–backward splitting or Douglas–Rachford splitting iterations start from random points, they avoid all strict saddle points with probability one. This result extends the similar results by Lee et al. from gradient descent to splitting methods. |
doi_str_mv | 10.1007/s10957-019-01477-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172483809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172483809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3040f8954a57c1dda6dc6d5217468a9e472b8c4e51fe8a72ee5ccf57c6aeeb6b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgejS_k8yy1FqFgkJ14SqkSaakjJkxmRbsynfwDX0SoyO4c3E5m--cCx8A5xhdYoTEVcKo4qJAuMrHhCj2B2CEuaAFkUIeghFChBSU0OoYnKS0QQhVUrARmE8CnIWda9rOwbqN8FrvfPp8_3j2AS67xve9D2uog4XLPnrTw6W2tnHFQ-tDDye71lsdjDsFR7Vukjv7zTF4upk9Tm-Lxf38bjpZFIZK3hcUMVTLijPNhcHW6tKa0nKCBSulrhwTZCUNcxzXTmpBnOPG1JkttXOrckXH4GLY7WL7unWpV5t2G0N-qfIIYZJKVGWKDJSJbUrR1aqL_kXHN4WR-hamBmEqC1M_wtQ-l-hQShkOaxf_pv9pfQGFHW95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172483809</pqid></control><display><type>article</type><title>An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance</title><source>SpringerLink Journals</source><creator>Liu, Yanli ; Yin, Wotao</creator><creatorcontrib>Liu, Yanli ; Yin, Wotao</creatorcontrib><description>It is known that operator splitting methods based on forward–backward splitting, Douglas–Rachford splitting, and Davis–Yin splitting decompose difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function), whose gradient descent iteration under a variable metric coincides with Davis–Yin splitting iteration. This result generalizes the Moreau envelope for proximal-point iteration and the envelopes for forward–backward splitting and Douglas–Rachford splitting iterations identified by Patrinos, Stella, and Themelis. Based on the new envelope and the stable–center manifold theorem, we further show that, when forward–backward splitting or Douglas–Rachford splitting iterations start from random points, they avoid all strict saddle points with probability one. This result extends the similar results by Lee et al. from gradient descent to splitting methods.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-019-01477-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Convexity ; Engineering ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Operators (mathematics) ; Optimization ; Optimization techniques ; Saddle points ; Smoothness ; Splitting ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2019-05, Vol.181 (2), p.567-587</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3040f8954a57c1dda6dc6d5217468a9e472b8c4e51fe8a72ee5ccf57c6aeeb6b3</citedby><cites>FETCH-LOGICAL-c385t-3040f8954a57c1dda6dc6d5217468a9e472b8c4e51fe8a72ee5ccf57c6aeeb6b3</cites><orcidid>0000-0001-6584-1378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-019-01477-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-019-01477-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Yanli</creatorcontrib><creatorcontrib>Yin, Wotao</creatorcontrib><title>An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>It is known that operator splitting methods based on forward–backward splitting, Douglas–Rachford splitting, and Davis–Yin splitting decompose difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function), whose gradient descent iteration under a variable metric coincides with Davis–Yin splitting iteration. This result generalizes the Moreau envelope for proximal-point iteration and the envelopes for forward–backward splitting and Douglas–Rachford splitting iterations identified by Patrinos, Stella, and Themelis. Based on the new envelope and the stable–center manifold theorem, we further show that, when forward–backward splitting or Douglas–Rachford splitting iterations start from random points, they avoid all strict saddle points with probability one. This result extends the similar results by Lee et al. from gradient descent to splitting methods.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Saddle points</subject><subject>Smoothness</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgejS_k8yy1FqFgkJ14SqkSaakjJkxmRbsynfwDX0SoyO4c3E5m--cCx8A5xhdYoTEVcKo4qJAuMrHhCj2B2CEuaAFkUIeghFChBSU0OoYnKS0QQhVUrARmE8CnIWda9rOwbqN8FrvfPp8_3j2AS67xve9D2uog4XLPnrTw6W2tnHFQ-tDDye71lsdjDsFR7Vukjv7zTF4upk9Tm-Lxf38bjpZFIZK3hcUMVTLijPNhcHW6tKa0nKCBSulrhwTZCUNcxzXTmpBnOPG1JkttXOrckXH4GLY7WL7unWpV5t2G0N-qfIIYZJKVGWKDJSJbUrR1aqL_kXHN4WR-hamBmEqC1M_wtQ-l-hQShkOaxf_pv9pfQGFHW95</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Liu, Yanli</creator><creator>Yin, Wotao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6584-1378</orcidid></search><sort><creationdate>20190501</creationdate><title>An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance</title><author>Liu, Yanli ; Yin, Wotao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3040f8954a57c1dda6dc6d5217468a9e472b8c4e51fe8a72ee5ccf57c6aeeb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Saddle points</topic><topic>Smoothness</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanli</creatorcontrib><creatorcontrib>Yin, Wotao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanli</au><au>Yin, Wotao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>181</volume><issue>2</issue><spage>567</spage><epage>587</epage><pages>567-587</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>It is known that operator splitting methods based on forward–backward splitting, Douglas–Rachford splitting, and Davis–Yin splitting decompose difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function), whose gradient descent iteration under a variable metric coincides with Davis–Yin splitting iteration. This result generalizes the Moreau envelope for proximal-point iteration and the envelopes for forward–backward splitting and Douglas–Rachford splitting iterations identified by Patrinos, Stella, and Themelis. Based on the new envelope and the stable–center manifold theorem, we further show that, when forward–backward splitting or Douglas–Rachford splitting iterations start from random points, they avoid all strict saddle points with probability one. This result extends the similar results by Lee et al. from gradient descent to splitting methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-019-01477-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6584-1378</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2019-05, Vol.181 (2), p.567-587 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2172483809 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Convexity Engineering Mathematics Mathematics and Statistics Operations Research/Decision Theory Operators (mathematics) Optimization Optimization techniques Saddle points Smoothness Splitting Theory of Computation |
title | An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Envelope%20for%20Davis%E2%80%93Yin%20Splitting%20and%20Strict%20Saddle-Point%20Avoidance&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Liu,%20Yanli&rft.date=2019-05-01&rft.volume=181&rft.issue=2&rft.spage=567&rft.epage=587&rft.pages=567-587&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-019-01477-z&rft_dat=%3Cproquest_cross%3E2172483809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172483809&rft_id=info:pmid/&rfr_iscdi=true |