Influence of PDLA nanoparticles size on drug release and interaction with cells
Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were prod...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2019-03, Vol.107 (3), p.482-493 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 493 |
---|---|
container_issue | 3 |
container_start_page | 482 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 107 |
creator | Cartaxo, Ana Luísa Costa-Pinto, Ana R. Martins, Albino Faria, Susana Ferreira Gonçalves, Virgínia Maria Tiritan, Maria Elizabeth Ferreira, Helena Neves, Nuno |
description | Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases. |
doi_str_mv | 10.1002/jbm.a.36563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172470893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172470893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EYpdHRY8sQYey-J2kXN6gRVBAbTn2BLLKJsFOQPD1GAKUVDPSnHtHOgjtUTKjhLDjZbGamRlXUvE1NKVSskTkSq5_7SJPOMvVBG2FsIywIpJtogknIpNKsim6u27KeoDGAm5LfH-2mOPGNG1nfF_ZGgIO1Uc8Ndj54Ql7qMEEwKZxuGp68Mb2VTy-Vf0ztlDXYQdtlKYOsPszt9HjxfnD6VWyuLu8Pp0vEiuY4okspJSU5U5RqnJnGVDDeCZpmQlHBCUsp9IQVVLnaM5TaoqyKKwzHAgFl_FtdDD2dr59GSD0etkOvokvNaMpEynJch6po5Gyvg3BQ6k7X62Mf9eU6C95OsrTRn_Li_T-T-dQrMD9sb-2IsBG4K2q4f2_Ln1zcjv_bT0cQ94a02kPr1XoTYgRQWJQaKZEKvkn6pOEWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172470893</pqid></control><display><type>article</type><title>Influence of PDLA nanoparticles size on drug release and interaction with cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cartaxo, Ana Luísa ; Costa-Pinto, Ana R. ; Martins, Albino ; Faria, Susana ; Ferreira Gonçalves, Virgínia Maria ; Tiritan, Maria Elizabeth ; Ferreira, Helena ; Neves, Nuno</creator><creatorcontrib>Cartaxo, Ana Luísa ; Costa-Pinto, Ana R. ; Martins, Albino ; Faria, Susana ; Ferreira Gonçalves, Virgínia Maria ; Tiritan, Maria Elizabeth ; Ferreira, Helena ; Neves, Nuno</creatorcontrib><description>Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36563</identifier><identifier>PMID: 30485652</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons</publisher><subject>Cell interactions ; Cell internalization ; Cell Line ; Confocal microscopy ; Cytocompatibility ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; Drug delivery ; Drug delivery systems ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Inflammatory diseases ; Kinetics ; Lactic acid ; Medical treatment ; Microscopy ; Nanoparticles ; Nanoparticles - chemistry ; Optimization ; Particle Size ; PDLA nanoparticles ; Polyesters - chemistry ; Polyesters - pharmacokinetics ; Polyesters - pharmacology ; Populations ; Prednisolone ; Prednisolone - chemistry ; Prednisolone - pharmacokinetics ; Prednisolone - pharmacology ; Size distribution ; Surface charge</subject><ispartof>Journal of biomedical materials research. Part A, 2019-03, Vol.107 (3), p.482-493</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</citedby><cites>FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</cites><orcidid>0000-0003-3868-0251 ; 0000-0001-8014-9902 ; 0000-0002-9151-516X ; 0000-0003-3041-0687 ; 0000-0003-3320-730X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36563$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36563$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30485652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartaxo, Ana Luísa</creatorcontrib><creatorcontrib>Costa-Pinto, Ana R.</creatorcontrib><creatorcontrib>Martins, Albino</creatorcontrib><creatorcontrib>Faria, Susana</creatorcontrib><creatorcontrib>Ferreira Gonçalves, Virgínia Maria</creatorcontrib><creatorcontrib>Tiritan, Maria Elizabeth</creatorcontrib><creatorcontrib>Ferreira, Helena</creatorcontrib><creatorcontrib>Neves, Nuno</creatorcontrib><title>Influence of PDLA nanoparticles size on drug release and interaction with cells</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.</description><subject>Cell interactions</subject><subject>Cell internalization</subject><subject>Cell Line</subject><subject>Confocal microscopy</subject><subject>Cytocompatibility</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Inflammatory diseases</subject><subject>Kinetics</subject><subject>Lactic acid</subject><subject>Medical treatment</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Optimization</subject><subject>Particle Size</subject><subject>PDLA nanoparticles</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacokinetics</subject><subject>Polyesters - pharmacology</subject><subject>Populations</subject><subject>Prednisolone</subject><subject>Prednisolone - chemistry</subject><subject>Prednisolone - pharmacokinetics</subject><subject>Prednisolone - pharmacology</subject><subject>Size distribution</subject><subject>Surface charge</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOxDAQRS0EYpdHRY8sQYey-J2kXN6gRVBAbTn2BLLKJsFOQPD1GAKUVDPSnHtHOgjtUTKjhLDjZbGamRlXUvE1NKVSskTkSq5_7SJPOMvVBG2FsIywIpJtogknIpNKsim6u27KeoDGAm5LfH-2mOPGNG1nfF_ZGgIO1Uc8Ndj54Ql7qMEEwKZxuGp68Mb2VTy-Vf0ztlDXYQdtlKYOsPszt9HjxfnD6VWyuLu8Pp0vEiuY4okspJSU5U5RqnJnGVDDeCZpmQlHBCUsp9IQVVLnaM5TaoqyKKwzHAgFl_FtdDD2dr59GSD0etkOvokvNaMpEynJch6po5Gyvg3BQ6k7X62Mf9eU6C95OsrTRn_Li_T-T-dQrMD9sb-2IsBG4K2q4f2_Ln1zcjv_bT0cQ94a02kPr1XoTYgRQWJQaKZEKvkn6pOEWg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Cartaxo, Ana Luísa</creator><creator>Costa-Pinto, Ana R.</creator><creator>Martins, Albino</creator><creator>Faria, Susana</creator><creator>Ferreira Gonçalves, Virgínia Maria</creator><creator>Tiritan, Maria Elizabeth</creator><creator>Ferreira, Helena</creator><creator>Neves, Nuno</creator><general>John Wiley & Sons</general><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3868-0251</orcidid><orcidid>https://orcid.org/0000-0001-8014-9902</orcidid><orcidid>https://orcid.org/0000-0002-9151-516X</orcidid><orcidid>https://orcid.org/0000-0003-3041-0687</orcidid><orcidid>https://orcid.org/0000-0003-3320-730X</orcidid></search><sort><creationdate>201903</creationdate><title>Influence of PDLA nanoparticles size on drug release and interaction with cells</title><author>Cartaxo, Ana Luísa ; Costa-Pinto, Ana R. ; Martins, Albino ; Faria, Susana ; Ferreira Gonçalves, Virgínia Maria ; Tiritan, Maria Elizabeth ; Ferreira, Helena ; Neves, Nuno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell interactions</topic><topic>Cell internalization</topic><topic>Cell Line</topic><topic>Confocal microscopy</topic><topic>Cytocompatibility</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Inflammatory diseases</topic><topic>Kinetics</topic><topic>Lactic acid</topic><topic>Medical treatment</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Optimization</topic><topic>Particle Size</topic><topic>PDLA nanoparticles</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacokinetics</topic><topic>Polyesters - pharmacology</topic><topic>Populations</topic><topic>Prednisolone</topic><topic>Prednisolone - chemistry</topic><topic>Prednisolone - pharmacokinetics</topic><topic>Prednisolone - pharmacology</topic><topic>Size distribution</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartaxo, Ana Luísa</creatorcontrib><creatorcontrib>Costa-Pinto, Ana R.</creatorcontrib><creatorcontrib>Martins, Albino</creatorcontrib><creatorcontrib>Faria, Susana</creatorcontrib><creatorcontrib>Ferreira Gonçalves, Virgínia Maria</creatorcontrib><creatorcontrib>Tiritan, Maria Elizabeth</creatorcontrib><creatorcontrib>Ferreira, Helena</creatorcontrib><creatorcontrib>Neves, Nuno</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartaxo, Ana Luísa</au><au>Costa-Pinto, Ana R.</au><au>Martins, Albino</au><au>Faria, Susana</au><au>Ferreira Gonçalves, Virgínia Maria</au><au>Tiritan, Maria Elizabeth</au><au>Ferreira, Helena</au><au>Neves, Nuno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of PDLA nanoparticles size on drug release and interaction with cells</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2019-03</date><risdate>2019</risdate><volume>107</volume><issue>3</issue><spage>482</spage><epage>493</epage><pages>482-493</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons</pub><pmid>30485652</pmid><doi>10.1002/jbm.a.36563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3868-0251</orcidid><orcidid>https://orcid.org/0000-0001-8014-9902</orcidid><orcidid>https://orcid.org/0000-0002-9151-516X</orcidid><orcidid>https://orcid.org/0000-0003-3041-0687</orcidid><orcidid>https://orcid.org/0000-0003-3320-730X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2019-03, Vol.107 (3), p.482-493 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_journals_2172470893 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Cell interactions Cell internalization Cell Line Confocal microscopy Cytocompatibility Drug Carriers - chemistry Drug Carriers - pharmacokinetics Drug Carriers - pharmacology Drug delivery Drug delivery systems Endothelial cells Endothelial Cells - cytology Endothelial Cells - metabolism Fibroblasts - cytology Fibroblasts - metabolism Humans Inflammatory diseases Kinetics Lactic acid Medical treatment Microscopy Nanoparticles Nanoparticles - chemistry Optimization Particle Size PDLA nanoparticles Polyesters - chemistry Polyesters - pharmacokinetics Polyesters - pharmacology Populations Prednisolone Prednisolone - chemistry Prednisolone - pharmacokinetics Prednisolone - pharmacology Size distribution Surface charge |
title | Influence of PDLA nanoparticles size on drug release and interaction with cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20PDLA%20nanoparticles%20size%20on%20drug%20release%20and%20interaction%20with%20cells&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Cartaxo,%20Ana%20Lu%C3%ADsa&rft.date=2019-03&rft.volume=107&rft.issue=3&rft.spage=482&rft.epage=493&rft.pages=482-493&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36563&rft_dat=%3Cproquest_cross%3E2172470893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172470893&rft_id=info:pmid/30485652&rfr_iscdi=true |