Influence of PDLA nanoparticles size on drug release and interaction with cells

Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2019-03, Vol.107 (3), p.482-493
Hauptverfasser: Cartaxo, Ana Luísa, Costa-Pinto, Ana R., Martins, Albino, Faria, Susana, Ferreira Gonçalves, Virgínia Maria, Tiritan, Maria Elizabeth, Ferreira, Helena, Neves, Nuno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 3
container_start_page 482
container_title Journal of biomedical materials research. Part A
container_volume 107
creator Cartaxo, Ana Luísa
Costa-Pinto, Ana R.
Martins, Albino
Faria, Susana
Ferreira Gonçalves, Virgínia Maria
Tiritan, Maria Elizabeth
Ferreira, Helena
Neves, Nuno
description Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.
doi_str_mv 10.1002/jbm.a.36563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172470893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172470893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EYpdHRY8sQYey-J2kXN6gRVBAbTn2BLLKJsFOQPD1GAKUVDPSnHtHOgjtUTKjhLDjZbGamRlXUvE1NKVSskTkSq5_7SJPOMvVBG2FsIywIpJtogknIpNKsim6u27KeoDGAm5LfH-2mOPGNG1nfF_ZGgIO1Uc8Ndj54Ql7qMEEwKZxuGp68Mb2VTy-Vf0ztlDXYQdtlKYOsPszt9HjxfnD6VWyuLu8Pp0vEiuY4okspJSU5U5RqnJnGVDDeCZpmQlHBCUsp9IQVVLnaM5TaoqyKKwzHAgFl_FtdDD2dr59GSD0etkOvokvNaMpEynJch6po5Gyvg3BQ6k7X62Mf9eU6C95OsrTRn_Li_T-T-dQrMD9sb-2IsBG4K2q4f2_Ln1zcjv_bT0cQ94a02kPr1XoTYgRQWJQaKZEKvkn6pOEWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172470893</pqid></control><display><type>article</type><title>Influence of PDLA nanoparticles size on drug release and interaction with cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cartaxo, Ana Luísa ; Costa-Pinto, Ana R. ; Martins, Albino ; Faria, Susana ; Ferreira Gonçalves, Virgínia Maria ; Tiritan, Maria Elizabeth ; Ferreira, Helena ; Neves, Nuno</creator><creatorcontrib>Cartaxo, Ana Luísa ; Costa-Pinto, Ana R. ; Martins, Albino ; Faria, Susana ; Ferreira Gonçalves, Virgínia Maria ; Tiritan, Maria Elizabeth ; Ferreira, Helena ; Neves, Nuno</creatorcontrib><description>Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36563</identifier><identifier>PMID: 30485652</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons</publisher><subject>Cell interactions ; Cell internalization ; Cell Line ; Confocal microscopy ; Cytocompatibility ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; Drug delivery ; Drug delivery systems ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Inflammatory diseases ; Kinetics ; Lactic acid ; Medical treatment ; Microscopy ; Nanoparticles ; Nanoparticles - chemistry ; Optimization ; Particle Size ; PDLA nanoparticles ; Polyesters - chemistry ; Polyesters - pharmacokinetics ; Polyesters - pharmacology ; Populations ; Prednisolone ; Prednisolone - chemistry ; Prednisolone - pharmacokinetics ; Prednisolone - pharmacology ; Size distribution ; Surface charge</subject><ispartof>Journal of biomedical materials research. Part A, 2019-03, Vol.107 (3), p.482-493</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</citedby><cites>FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</cites><orcidid>0000-0003-3868-0251 ; 0000-0001-8014-9902 ; 0000-0002-9151-516X ; 0000-0003-3041-0687 ; 0000-0003-3320-730X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36563$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36563$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30485652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartaxo, Ana Luísa</creatorcontrib><creatorcontrib>Costa-Pinto, Ana R.</creatorcontrib><creatorcontrib>Martins, Albino</creatorcontrib><creatorcontrib>Faria, Susana</creatorcontrib><creatorcontrib>Ferreira Gonçalves, Virgínia Maria</creatorcontrib><creatorcontrib>Tiritan, Maria Elizabeth</creatorcontrib><creatorcontrib>Ferreira, Helena</creatorcontrib><creatorcontrib>Neves, Nuno</creatorcontrib><title>Influence of PDLA nanoparticles size on drug release and interaction with cells</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.</description><subject>Cell interactions</subject><subject>Cell internalization</subject><subject>Cell Line</subject><subject>Confocal microscopy</subject><subject>Cytocompatibility</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Inflammatory diseases</subject><subject>Kinetics</subject><subject>Lactic acid</subject><subject>Medical treatment</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Optimization</subject><subject>Particle Size</subject><subject>PDLA nanoparticles</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacokinetics</subject><subject>Polyesters - pharmacology</subject><subject>Populations</subject><subject>Prednisolone</subject><subject>Prednisolone - chemistry</subject><subject>Prednisolone - pharmacokinetics</subject><subject>Prednisolone - pharmacology</subject><subject>Size distribution</subject><subject>Surface charge</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOxDAQRS0EYpdHRY8sQYey-J2kXN6gRVBAbTn2BLLKJsFOQPD1GAKUVDPSnHtHOgjtUTKjhLDjZbGamRlXUvE1NKVSskTkSq5_7SJPOMvVBG2FsIywIpJtogknIpNKsim6u27KeoDGAm5LfH-2mOPGNG1nfF_ZGgIO1Uc8Ndj54Ql7qMEEwKZxuGp68Mb2VTy-Vf0ztlDXYQdtlKYOsPszt9HjxfnD6VWyuLu8Pp0vEiuY4okspJSU5U5RqnJnGVDDeCZpmQlHBCUsp9IQVVLnaM5TaoqyKKwzHAgFl_FtdDD2dr59GSD0etkOvokvNaMpEynJch6po5Gyvg3BQ6k7X62Mf9eU6C95OsrTRn_Li_T-T-dQrMD9sb-2IsBG4K2q4f2_Ln1zcjv_bT0cQ94a02kPr1XoTYgRQWJQaKZEKvkn6pOEWg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Cartaxo, Ana Luísa</creator><creator>Costa-Pinto, Ana R.</creator><creator>Martins, Albino</creator><creator>Faria, Susana</creator><creator>Ferreira Gonçalves, Virgínia Maria</creator><creator>Tiritan, Maria Elizabeth</creator><creator>Ferreira, Helena</creator><creator>Neves, Nuno</creator><general>John Wiley &amp; Sons</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3868-0251</orcidid><orcidid>https://orcid.org/0000-0001-8014-9902</orcidid><orcidid>https://orcid.org/0000-0002-9151-516X</orcidid><orcidid>https://orcid.org/0000-0003-3041-0687</orcidid><orcidid>https://orcid.org/0000-0003-3320-730X</orcidid></search><sort><creationdate>201903</creationdate><title>Influence of PDLA nanoparticles size on drug release and interaction with cells</title><author>Cartaxo, Ana Luísa ; Costa-Pinto, Ana R. ; Martins, Albino ; Faria, Susana ; Ferreira Gonçalves, Virgínia Maria ; Tiritan, Maria Elizabeth ; Ferreira, Helena ; Neves, Nuno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4263-5b555129d61169dc2e1a23851f84d04102915a06f1dd19371abfbbcda3e01ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell interactions</topic><topic>Cell internalization</topic><topic>Cell Line</topic><topic>Confocal microscopy</topic><topic>Cytocompatibility</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Inflammatory diseases</topic><topic>Kinetics</topic><topic>Lactic acid</topic><topic>Medical treatment</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Optimization</topic><topic>Particle Size</topic><topic>PDLA nanoparticles</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacokinetics</topic><topic>Polyesters - pharmacology</topic><topic>Populations</topic><topic>Prednisolone</topic><topic>Prednisolone - chemistry</topic><topic>Prednisolone - pharmacokinetics</topic><topic>Prednisolone - pharmacology</topic><topic>Size distribution</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartaxo, Ana Luísa</creatorcontrib><creatorcontrib>Costa-Pinto, Ana R.</creatorcontrib><creatorcontrib>Martins, Albino</creatorcontrib><creatorcontrib>Faria, Susana</creatorcontrib><creatorcontrib>Ferreira Gonçalves, Virgínia Maria</creatorcontrib><creatorcontrib>Tiritan, Maria Elizabeth</creatorcontrib><creatorcontrib>Ferreira, Helena</creatorcontrib><creatorcontrib>Neves, Nuno</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartaxo, Ana Luísa</au><au>Costa-Pinto, Ana R.</au><au>Martins, Albino</au><au>Faria, Susana</au><au>Ferreira Gonçalves, Virgínia Maria</au><au>Tiritan, Maria Elizabeth</au><au>Ferreira, Helena</au><au>Neves, Nuno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of PDLA nanoparticles size on drug release and interaction with cells</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2019-03</date><risdate>2019</risdate><volume>107</volume><issue>3</issue><spage>482</spage><epage>493</epage><pages>482-493</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons</pub><pmid>30485652</pmid><doi>10.1002/jbm.a.36563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3868-0251</orcidid><orcidid>https://orcid.org/0000-0001-8014-9902</orcidid><orcidid>https://orcid.org/0000-0002-9151-516X</orcidid><orcidid>https://orcid.org/0000-0003-3041-0687</orcidid><orcidid>https://orcid.org/0000-0003-3320-730X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2019-03, Vol.107 (3), p.482-493
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_journals_2172470893
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Cell interactions
Cell internalization
Cell Line
Confocal microscopy
Cytocompatibility
Drug Carriers - chemistry
Drug Carriers - pharmacokinetics
Drug Carriers - pharmacology
Drug delivery
Drug delivery systems
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - metabolism
Fibroblasts - cytology
Fibroblasts - metabolism
Humans
Inflammatory diseases
Kinetics
Lactic acid
Medical treatment
Microscopy
Nanoparticles
Nanoparticles - chemistry
Optimization
Particle Size
PDLA nanoparticles
Polyesters - chemistry
Polyesters - pharmacokinetics
Polyesters - pharmacology
Populations
Prednisolone
Prednisolone - chemistry
Prednisolone - pharmacokinetics
Prednisolone - pharmacology
Size distribution
Surface charge
title Influence of PDLA nanoparticles size on drug release and interaction with cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20PDLA%20nanoparticles%20size%20on%20drug%20release%20and%20interaction%20with%20cells&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Cartaxo,%20Ana%20Lu%C3%ADsa&rft.date=2019-03&rft.volume=107&rft.issue=3&rft.spage=482&rft.epage=493&rft.pages=482-493&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36563&rft_dat=%3Cproquest_cross%3E2172470893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172470893&rft_id=info:pmid/30485652&rfr_iscdi=true