Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus
We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanical...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2019-01, Vol.46 (1), p.80-88 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 80 |
container_title | Geophysical research letters |
container_volume | 46 |
creator | Hughson, Kynan H. G. Russell, C. T. Schmidt, B. E. Travis, B. Preusker, F. Neesemann, A. Sizemore, H. G. Schenk, P. M. Buczkowski, D. L. Castillo‐Rogez, J. C. Raymond, C. A. |
description | We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity.
Plain Language Summary
In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction.
Key Points
Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn
The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases
We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2 |
doi_str_mv | 10.1029/2018GL080258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172228483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172228483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqWw4wMssaVw7ThxzA5V9CGFgqCsI-Nck1QhLnYi1L_HUBasWN2HzsxIQ8g5gysGXF1zYPm8gBx4mh-QEVNCTHIAeUhGACruXGbH5CSEDQAkkLAR0Svn33VLZ3po-0BdR6foMdzQZReatzq-ll3vaF8jvUdT664xkX70bou-bzBQ3VV0XeOPyaIJvfM76ixdaU-fh9YM4ZQcWd0GPPudY_Iyu1tPF5PiYb6c3hYTnWRSTARUgjErpNHIcmWlShWmlTQGDMusBLQa0oxbg1qhshlKJl-zeFRoUzTJmFzsfbfefQwY-nLjBt_FyJIzyTnPRZ5E6nJPGe9C8GjLrW_etd-VDMrvEsu_JUac7_HPpsXdv2w5fyqigovkC08IcxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172228483</pqid></control><display><type>article</type><title>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hughson, Kynan H. G. ; Russell, C. T. ; Schmidt, B. E. ; Travis, B. ; Preusker, F. ; Neesemann, A. ; Sizemore, H. G. ; Schenk, P. M. ; Buczkowski, D. L. ; Castillo‐Rogez, J. C. ; Raymond, C. A.</creator><creatorcontrib>Hughson, Kynan H. G. ; Russell, C. T. ; Schmidt, B. E. ; Travis, B. ; Preusker, F. ; Neesemann, A. ; Sizemore, H. G. ; Schenk, P. M. ; Buczkowski, D. L. ; Castillo‐Rogez, J. C. ; Raymond, C. A.</creatorcontrib><description>We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity.
Plain Language Summary
In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction.
Key Points
Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn
The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases
We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL080258</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Aeronautics ; Asteroids ; Ceres ; Ceres asteroid ; Dawn ; Dwarf planets ; Elastic properties ; elastic thickness ; Enceladus ; Europa ; extension ; Fault lines ; faulting ; Faults ; Flexing ; Ganymede ; Heat ; Heat flow ; Heat flux ; Heat transfer ; Heat transmission ; Ice ; Ice volume ; Icy satellites ; Jupiter ; Jupiter satellites ; Mars ; Mechanical properties ; Porosity ; Rigidity ; Saturn ; Saturn satellites ; Silicates ; Spacecraft ; Thickness ; Topography (geology) ; Upper bounds ; Water ice</subject><ispartof>Geophysical research letters, 2019-01, Vol.46 (1), p.80-88</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</citedby><cites>FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</cites><orcidid>0000-0002-4729-7804 ; 0000-0001-6698-7651 ; 0000-0001-9005-4202 ; 0000-0002-5714-3526 ; 0000-0001-7376-8510 ; 0000-0002-4213-8097 ; 0000-0003-1639-8298 ; 0000-0002-6641-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL080258$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL080258$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Hughson, Kynan H. G.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Schmidt, B. E.</creatorcontrib><creatorcontrib>Travis, B.</creatorcontrib><creatorcontrib>Preusker, F.</creatorcontrib><creatorcontrib>Neesemann, A.</creatorcontrib><creatorcontrib>Sizemore, H. G.</creatorcontrib><creatorcontrib>Schenk, P. M.</creatorcontrib><creatorcontrib>Buczkowski, D. L.</creatorcontrib><creatorcontrib>Castillo‐Rogez, J. C.</creatorcontrib><creatorcontrib>Raymond, C. A.</creatorcontrib><title>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</title><title>Geophysical research letters</title><description>We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity.
Plain Language Summary
In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction.
Key Points
Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn
The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases
We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2</description><subject>Aeronautics</subject><subject>Asteroids</subject><subject>Ceres</subject><subject>Ceres asteroid</subject><subject>Dawn</subject><subject>Dwarf planets</subject><subject>Elastic properties</subject><subject>elastic thickness</subject><subject>Enceladus</subject><subject>Europa</subject><subject>extension</subject><subject>Fault lines</subject><subject>faulting</subject><subject>Faults</subject><subject>Flexing</subject><subject>Ganymede</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Ice</subject><subject>Ice volume</subject><subject>Icy satellites</subject><subject>Jupiter</subject><subject>Jupiter satellites</subject><subject>Mars</subject><subject>Mechanical properties</subject><subject>Porosity</subject><subject>Rigidity</subject><subject>Saturn</subject><subject>Saturn satellites</subject><subject>Silicates</subject><subject>Spacecraft</subject><subject>Thickness</subject><subject>Topography (geology)</subject><subject>Upper bounds</subject><subject>Water ice</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqWw4wMssaVw7ThxzA5V9CGFgqCsI-Nck1QhLnYi1L_HUBasWN2HzsxIQ8g5gysGXF1zYPm8gBx4mh-QEVNCTHIAeUhGACruXGbH5CSEDQAkkLAR0Svn33VLZ3po-0BdR6foMdzQZReatzq-ll3vaF8jvUdT664xkX70bou-bzBQ3VV0XeOPyaIJvfM76ixdaU-fh9YM4ZQcWd0GPPudY_Iyu1tPF5PiYb6c3hYTnWRSTARUgjErpNHIcmWlShWmlTQGDMusBLQa0oxbg1qhshlKJl-zeFRoUzTJmFzsfbfefQwY-nLjBt_FyJIzyTnPRZ5E6nJPGe9C8GjLrW_etd-VDMrvEsu_JUac7_HPpsXdv2w5fyqigovkC08IcxA</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Hughson, Kynan H. G.</creator><creator>Russell, C. T.</creator><creator>Schmidt, B. E.</creator><creator>Travis, B.</creator><creator>Preusker, F.</creator><creator>Neesemann, A.</creator><creator>Sizemore, H. G.</creator><creator>Schenk, P. M.</creator><creator>Buczkowski, D. L.</creator><creator>Castillo‐Rogez, J. C.</creator><creator>Raymond, C. A.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4729-7804</orcidid><orcidid>https://orcid.org/0000-0001-6698-7651</orcidid><orcidid>https://orcid.org/0000-0001-9005-4202</orcidid><orcidid>https://orcid.org/0000-0002-5714-3526</orcidid><orcidid>https://orcid.org/0000-0001-7376-8510</orcidid><orcidid>https://orcid.org/0000-0002-4213-8097</orcidid><orcidid>https://orcid.org/0000-0003-1639-8298</orcidid><orcidid>https://orcid.org/0000-0002-6641-2388</orcidid></search><sort><creationdate>20190116</creationdate><title>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</title><author>Hughson, Kynan H. G. ; Russell, C. T. ; Schmidt, B. E. ; Travis, B. ; Preusker, F. ; Neesemann, A. ; Sizemore, H. G. ; Schenk, P. M. ; Buczkowski, D. L. ; Castillo‐Rogez, J. C. ; Raymond, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aeronautics</topic><topic>Asteroids</topic><topic>Ceres</topic><topic>Ceres asteroid</topic><topic>Dawn</topic><topic>Dwarf planets</topic><topic>Elastic properties</topic><topic>elastic thickness</topic><topic>Enceladus</topic><topic>Europa</topic><topic>extension</topic><topic>Fault lines</topic><topic>faulting</topic><topic>Faults</topic><topic>Flexing</topic><topic>Ganymede</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Ice</topic><topic>Ice volume</topic><topic>Icy satellites</topic><topic>Jupiter</topic><topic>Jupiter satellites</topic><topic>Mars</topic><topic>Mechanical properties</topic><topic>Porosity</topic><topic>Rigidity</topic><topic>Saturn</topic><topic>Saturn satellites</topic><topic>Silicates</topic><topic>Spacecraft</topic><topic>Thickness</topic><topic>Topography (geology)</topic><topic>Upper bounds</topic><topic>Water ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughson, Kynan H. G.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Schmidt, B. E.</creatorcontrib><creatorcontrib>Travis, B.</creatorcontrib><creatorcontrib>Preusker, F.</creatorcontrib><creatorcontrib>Neesemann, A.</creatorcontrib><creatorcontrib>Sizemore, H. G.</creatorcontrib><creatorcontrib>Schenk, P. M.</creatorcontrib><creatorcontrib>Buczkowski, D. L.</creatorcontrib><creatorcontrib>Castillo‐Rogez, J. C.</creatorcontrib><creatorcontrib>Raymond, C. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughson, Kynan H. G.</au><au>Russell, C. T.</au><au>Schmidt, B. E.</au><au>Travis, B.</au><au>Preusker, F.</au><au>Neesemann, A.</au><au>Sizemore, H. G.</au><au>Schenk, P. M.</au><au>Buczkowski, D. L.</au><au>Castillo‐Rogez, J. C.</au><au>Raymond, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</atitle><jtitle>Geophysical research letters</jtitle><date>2019-01-16</date><risdate>2019</risdate><volume>46</volume><issue>1</issue><spage>80</spage><epage>88</epage><pages>80-88</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity.
Plain Language Summary
In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction.
Key Points
Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn
The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases
We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018GL080258</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4729-7804</orcidid><orcidid>https://orcid.org/0000-0001-6698-7651</orcidid><orcidid>https://orcid.org/0000-0001-9005-4202</orcidid><orcidid>https://orcid.org/0000-0002-5714-3526</orcidid><orcidid>https://orcid.org/0000-0001-7376-8510</orcidid><orcidid>https://orcid.org/0000-0002-4213-8097</orcidid><orcidid>https://orcid.org/0000-0003-1639-8298</orcidid><orcidid>https://orcid.org/0000-0002-6641-2388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2019-01, Vol.46 (1), p.80-88 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2172228483 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Aeronautics Asteroids Ceres Ceres asteroid Dawn Dwarf planets Elastic properties elastic thickness Enceladus Europa extension Fault lines faulting Faults Flexing Ganymede Heat Heat flow Heat flux Heat transfer Heat transmission Ice Ice volume Icy satellites Jupiter Jupiter satellites Mars Mechanical properties Porosity Rigidity Saturn Saturn satellites Silicates Spacecraft Thickness Topography (geology) Upper bounds Water ice |
title | Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20Faults%20on%20Ceres:%20Insights%20Into%20the%20Mechanical%20Properties%20and%20Thermal%20History%20of%20Nar%20Sulcus&rft.jtitle=Geophysical%20research%20letters&rft.au=Hughson,%20Kynan%20H.%20G.&rft.date=2019-01-16&rft.volume=46&rft.issue=1&rft.spage=80&rft.epage=88&rft.pages=80-88&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL080258&rft_dat=%3Cproquest_cross%3E2172228483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172228483&rft_id=info:pmid/&rfr_iscdi=true |