Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus

We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-01, Vol.46 (1), p.80-88
Hauptverfasser: Hughson, Kynan H. G., Russell, C. T., Schmidt, B. E., Travis, B., Preusker, F., Neesemann, A., Sizemore, H. G., Schenk, P. M., Buczkowski, D. L., Castillo‐Rogez, J. C., Raymond, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 80
container_title Geophysical research letters
container_volume 46
creator Hughson, Kynan H. G.
Russell, C. T.
Schmidt, B. E.
Travis, B.
Preusker, F.
Neesemann, A.
Sizemore, H. G.
Schenk, P. M.
Buczkowski, D. L.
Castillo‐Rogez, J. C.
Raymond, C. A.
description We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity. Plain Language Summary In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction. Key Points Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2
doi_str_mv 10.1029/2018GL080258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172228483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172228483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqWw4wMssaVw7ThxzA5V9CGFgqCsI-Nck1QhLnYi1L_HUBasWN2HzsxIQ8g5gysGXF1zYPm8gBx4mh-QEVNCTHIAeUhGACruXGbH5CSEDQAkkLAR0Svn33VLZ3po-0BdR6foMdzQZReatzq-ll3vaF8jvUdT664xkX70bou-bzBQ3VV0XeOPyaIJvfM76ixdaU-fh9YM4ZQcWd0GPPudY_Iyu1tPF5PiYb6c3hYTnWRSTARUgjErpNHIcmWlShWmlTQGDMusBLQa0oxbg1qhshlKJl-zeFRoUzTJmFzsfbfefQwY-nLjBt_FyJIzyTnPRZ5E6nJPGe9C8GjLrW_etd-VDMrvEsu_JUac7_HPpsXdv2w5fyqigovkC08IcxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172228483</pqid></control><display><type>article</type><title>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hughson, Kynan H. G. ; Russell, C. T. ; Schmidt, B. E. ; Travis, B. ; Preusker, F. ; Neesemann, A. ; Sizemore, H. G. ; Schenk, P. M. ; Buczkowski, D. L. ; Castillo‐Rogez, J. C. ; Raymond, C. A.</creator><creatorcontrib>Hughson, Kynan H. G. ; Russell, C. T. ; Schmidt, B. E. ; Travis, B. ; Preusker, F. ; Neesemann, A. ; Sizemore, H. G. ; Schenk, P. M. ; Buczkowski, D. L. ; Castillo‐Rogez, J. C. ; Raymond, C. A.</creatorcontrib><description>We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity. Plain Language Summary In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction. Key Points Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL080258</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aeronautics ; Asteroids ; Ceres ; Ceres asteroid ; Dawn ; Dwarf planets ; Elastic properties ; elastic thickness ; Enceladus ; Europa ; extension ; Fault lines ; faulting ; Faults ; Flexing ; Ganymede ; Heat ; Heat flow ; Heat flux ; Heat transfer ; Heat transmission ; Ice ; Ice volume ; Icy satellites ; Jupiter ; Jupiter satellites ; Mars ; Mechanical properties ; Porosity ; Rigidity ; Saturn ; Saturn satellites ; Silicates ; Spacecraft ; Thickness ; Topography (geology) ; Upper bounds ; Water ice</subject><ispartof>Geophysical research letters, 2019-01, Vol.46 (1), p.80-88</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</citedby><cites>FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</cites><orcidid>0000-0002-4729-7804 ; 0000-0001-6698-7651 ; 0000-0001-9005-4202 ; 0000-0002-5714-3526 ; 0000-0001-7376-8510 ; 0000-0002-4213-8097 ; 0000-0003-1639-8298 ; 0000-0002-6641-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL080258$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL080258$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Hughson, Kynan H. G.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Schmidt, B. E.</creatorcontrib><creatorcontrib>Travis, B.</creatorcontrib><creatorcontrib>Preusker, F.</creatorcontrib><creatorcontrib>Neesemann, A.</creatorcontrib><creatorcontrib>Sizemore, H. G.</creatorcontrib><creatorcontrib>Schenk, P. M.</creatorcontrib><creatorcontrib>Buczkowski, D. L.</creatorcontrib><creatorcontrib>Castillo‐Rogez, J. C.</creatorcontrib><creatorcontrib>Raymond, C. A.</creatorcontrib><title>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</title><title>Geophysical research letters</title><description>We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity. Plain Language Summary In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction. Key Points Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2</description><subject>Aeronautics</subject><subject>Asteroids</subject><subject>Ceres</subject><subject>Ceres asteroid</subject><subject>Dawn</subject><subject>Dwarf planets</subject><subject>Elastic properties</subject><subject>elastic thickness</subject><subject>Enceladus</subject><subject>Europa</subject><subject>extension</subject><subject>Fault lines</subject><subject>faulting</subject><subject>Faults</subject><subject>Flexing</subject><subject>Ganymede</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Ice</subject><subject>Ice volume</subject><subject>Icy satellites</subject><subject>Jupiter</subject><subject>Jupiter satellites</subject><subject>Mars</subject><subject>Mechanical properties</subject><subject>Porosity</subject><subject>Rigidity</subject><subject>Saturn</subject><subject>Saturn satellites</subject><subject>Silicates</subject><subject>Spacecraft</subject><subject>Thickness</subject><subject>Topography (geology)</subject><subject>Upper bounds</subject><subject>Water ice</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqWw4wMssaVw7ThxzA5V9CGFgqCsI-Nck1QhLnYi1L_HUBasWN2HzsxIQ8g5gysGXF1zYPm8gBx4mh-QEVNCTHIAeUhGACruXGbH5CSEDQAkkLAR0Svn33VLZ3po-0BdR6foMdzQZReatzq-ll3vaF8jvUdT664xkX70bou-bzBQ3VV0XeOPyaIJvfM76ixdaU-fh9YM4ZQcWd0GPPudY_Iyu1tPF5PiYb6c3hYTnWRSTARUgjErpNHIcmWlShWmlTQGDMusBLQa0oxbg1qhshlKJl-zeFRoUzTJmFzsfbfefQwY-nLjBt_FyJIzyTnPRZ5E6nJPGe9C8GjLrW_etd-VDMrvEsu_JUac7_HPpsXdv2w5fyqigovkC08IcxA</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Hughson, Kynan H. G.</creator><creator>Russell, C. T.</creator><creator>Schmidt, B. E.</creator><creator>Travis, B.</creator><creator>Preusker, F.</creator><creator>Neesemann, A.</creator><creator>Sizemore, H. G.</creator><creator>Schenk, P. M.</creator><creator>Buczkowski, D. L.</creator><creator>Castillo‐Rogez, J. C.</creator><creator>Raymond, C. A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4729-7804</orcidid><orcidid>https://orcid.org/0000-0001-6698-7651</orcidid><orcidid>https://orcid.org/0000-0001-9005-4202</orcidid><orcidid>https://orcid.org/0000-0002-5714-3526</orcidid><orcidid>https://orcid.org/0000-0001-7376-8510</orcidid><orcidid>https://orcid.org/0000-0002-4213-8097</orcidid><orcidid>https://orcid.org/0000-0003-1639-8298</orcidid><orcidid>https://orcid.org/0000-0002-6641-2388</orcidid></search><sort><creationdate>20190116</creationdate><title>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</title><author>Hughson, Kynan H. G. ; Russell, C. T. ; Schmidt, B. E. ; Travis, B. ; Preusker, F. ; Neesemann, A. ; Sizemore, H. G. ; Schenk, P. M. ; Buczkowski, D. L. ; Castillo‐Rogez, J. C. ; Raymond, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3674-40d411f47cae189f7959e5d7cc0c16f70efa0562fcea9e9f6e717b6ea9def5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aeronautics</topic><topic>Asteroids</topic><topic>Ceres</topic><topic>Ceres asteroid</topic><topic>Dawn</topic><topic>Dwarf planets</topic><topic>Elastic properties</topic><topic>elastic thickness</topic><topic>Enceladus</topic><topic>Europa</topic><topic>extension</topic><topic>Fault lines</topic><topic>faulting</topic><topic>Faults</topic><topic>Flexing</topic><topic>Ganymede</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Ice</topic><topic>Ice volume</topic><topic>Icy satellites</topic><topic>Jupiter</topic><topic>Jupiter satellites</topic><topic>Mars</topic><topic>Mechanical properties</topic><topic>Porosity</topic><topic>Rigidity</topic><topic>Saturn</topic><topic>Saturn satellites</topic><topic>Silicates</topic><topic>Spacecraft</topic><topic>Thickness</topic><topic>Topography (geology)</topic><topic>Upper bounds</topic><topic>Water ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughson, Kynan H. G.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Schmidt, B. E.</creatorcontrib><creatorcontrib>Travis, B.</creatorcontrib><creatorcontrib>Preusker, F.</creatorcontrib><creatorcontrib>Neesemann, A.</creatorcontrib><creatorcontrib>Sizemore, H. G.</creatorcontrib><creatorcontrib>Schenk, P. M.</creatorcontrib><creatorcontrib>Buczkowski, D. L.</creatorcontrib><creatorcontrib>Castillo‐Rogez, J. C.</creatorcontrib><creatorcontrib>Raymond, C. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughson, Kynan H. G.</au><au>Russell, C. T.</au><au>Schmidt, B. E.</au><au>Travis, B.</au><au>Preusker, F.</au><au>Neesemann, A.</au><au>Sizemore, H. G.</au><au>Schenk, P. M.</au><au>Buczkowski, D. L.</au><au>Castillo‐Rogez, J. C.</au><au>Raymond, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus</atitle><jtitle>Geophysical research letters</jtitle><date>2019-01-16</date><risdate>2019</risdate><volume>46</volume><issue>1</issue><spage>80</spage><epage>88</epage><pages>80-88</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We characterized two sets of extensional faults that comprise the Nar Sulcus region of Ceres by applying a cantilever model for fault related flexure and derived flexural rigidity values for Nar Sulcus between 2.0 · 1015 and 1.8 · 1016 N·m. This range of flexural rigidity makes Nar Sulcus mechanically akin to extensional structures on Ganymede, Europa, and Enceladus. We combine these observations with an inferred strength profile for the upper mechanical layer of Ceres and estimate its thickness to be 2.9–9.5 km. Surface heat fluxes at Nar Sulcus during its formation were likely ≥10 mW/m2 for estimated strain rates of 10−17–10−14 s−1, which is at least one order of magnitude larger than the current estimated global average. For geologically plausible heat fluxes between 10 and 100 mW/m2, we estimate an upper bound of ~30 vol.% mechanically silicate‐like phases in the near surface at Nar Sulcus, neglecting the effects of porosity. Plain Language Summary In March 2015, the National Aeronautics and Space Administration's Dawn spacecraft began orbiting the dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. Research has shown that a major volume fraction of the subsurface of Ceres may be composed of water ice. Knowing how water ice is distributed in the upper layer of Ceres is essential to understanding how the surface and interior have evolved over time. The Nar Sulcus region consists of two sets of extensional faults that we characterized in this study. We modeled the topography of these extensional faults in order to determine the elastic properties of the region. The properties we derived for Ceres' uppermost mechanical layer are similar to those of many of the icy moons of Jupiter and Saturn. Furthermore, they were used to help constrain three key parameters of this upper layer at Nar Sulcus: its mechanical thickness, its heat flow during the formation of the faults, and its water ice volume fraction. Key Points Modeling of cerean faulted topography suggests that its surface is elastically similar to many of the icy satellites of Jupiter and Saturn The near surface of Ceres at Nar Sulcus is likely ice‐rich and contains less than ~30 vol.% mechanically silicate‐like phases We estimate the surface heat flux at Nar Sulcus during its formation to be ≥10 mW/m2</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL080258</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4729-7804</orcidid><orcidid>https://orcid.org/0000-0001-6698-7651</orcidid><orcidid>https://orcid.org/0000-0001-9005-4202</orcidid><orcidid>https://orcid.org/0000-0002-5714-3526</orcidid><orcidid>https://orcid.org/0000-0001-7376-8510</orcidid><orcidid>https://orcid.org/0000-0002-4213-8097</orcidid><orcidid>https://orcid.org/0000-0003-1639-8298</orcidid><orcidid>https://orcid.org/0000-0002-6641-2388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-01, Vol.46 (1), p.80-88
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2172228483
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Aeronautics
Asteroids
Ceres
Ceres asteroid
Dawn
Dwarf planets
Elastic properties
elastic thickness
Enceladus
Europa
extension
Fault lines
faulting
Faults
Flexing
Ganymede
Heat
Heat flow
Heat flux
Heat transfer
Heat transmission
Ice
Ice volume
Icy satellites
Jupiter
Jupiter satellites
Mars
Mechanical properties
Porosity
Rigidity
Saturn
Saturn satellites
Silicates
Spacecraft
Thickness
Topography (geology)
Upper bounds
Water ice
title Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20Faults%20on%20Ceres:%20Insights%20Into%20the%20Mechanical%20Properties%20and%20Thermal%20History%20of%20Nar%20Sulcus&rft.jtitle=Geophysical%20research%20letters&rft.au=Hughson,%20Kynan%20H.%20G.&rft.date=2019-01-16&rft.volume=46&rft.issue=1&rft.spage=80&rft.epage=88&rft.pages=80-88&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL080258&rft_dat=%3Cproquest_cross%3E2172228483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172228483&rft_id=info:pmid/&rfr_iscdi=true