Electroweak phase transition in the scale invariant standard model
In an extension to the scale invariant standard model by two real singlet scalars s and s′ in addition to the Higgs field, we investigate the strong first-order electroweak phase transition as a requirement for baryogenesis. This is the minimal extension to the scale invariant standard model with tw...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-12, Vol.98 (11), p.1, Article 115016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 98 |
creator | Ghorbani, Parsa Hossein |
description | In an extension to the scale invariant standard model by two real singlet scalars s and s′ in addition to the Higgs field, we investigate the strong first-order electroweak phase transition as a requirement for baryogenesis. This is the minimal extension to the scale invariant standard model with two extra degrees of freedom that possesses the physical Higgs mass of 125 GeV. The scalar s′ being stable because of the Z2 discrete symmetry is taken as the dark matter candidate. We then show that the electroweak phase transition is strongly first order, the dark matter relic density takes the desired value ΩDMh2 ∼ 0.11, and the constraints from direct detection experiments are respected only if ms′ ≡ mDM ≳ 4.5 TeV. The model also puts a lower bound on the scalon mass, ms ≳ 200 GeV. |
doi_str_mv | 10.1103/PhysRevD.98.115016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172136156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172136156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a10b454e4aba344fe4581bee78f3ff01ac9a6ea09830f3c1831a89008abeb9af3</originalsourceid><addsrcrecordid>eNo9kEtLA0EQhAdRMMT8AU8Dnjd27-xj5qgxPiCgiJ6H3k0P2bjZjTOTSP69K1FPXV0UVfAJcYkwRQR1_bI6hFfe302NHowcsDgRozQrIQFIzem_RjgXkxDWMMgCTIk4Erfzluvo-y-mD7ldUWAZPXWhiU3fyaaTccUy1NTy8OzJN9RFGSJ1S_JLuemX3F6IM0dt4MnvHYv3-_nb7DFZPD88zW4WSa10HhNCqLI844wqUlnmOMs1Vsyldso5QKoNFUxgtAKnatQKSRsATRVXhpwai6tj79b3nzsO0a77ne-GSZtimaIqMC-GVHpM1b4PwbOzW99syB8sgv3BZf9wWaPtEZf6Bop9X58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172136156</pqid></control><display><type>article</type><title>Electroweak phase transition in the scale invariant standard model</title><source>American Physical Society Journals</source><creator>Ghorbani, Parsa Hossein</creator><creatorcontrib>Ghorbani, Parsa Hossein</creatorcontrib><description>In an extension to the scale invariant standard model by two real singlet scalars s and s′ in addition to the Higgs field, we investigate the strong first-order electroweak phase transition as a requirement for baryogenesis. This is the minimal extension to the scale invariant standard model with two extra degrees of freedom that possesses the physical Higgs mass of 125 GeV. The scalar s′ being stable because of the Z2 discrete symmetry is taken as the dark matter candidate. We then show that the electroweak phase transition is strongly first order, the dark matter relic density takes the desired value ΩDMh2 ∼ 0.11, and the constraints from direct detection experiments are respected only if ms′ ≡ mDM ≳ 4.5 TeV. The model also puts a lower bound on the scalon mass, ms ≳ 200 GeV.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.115016</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cosmology ; Dark matter ; Electroweak model ; Invariants ; Lower bounds ; Phase transitions ; Scalars</subject><ispartof>Physical review. D, 2018-12, Vol.98 (11), p.1, Article 115016</ispartof><rights>Copyright American Physical Society Dec 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a10b454e4aba344fe4581bee78f3ff01ac9a6ea09830f3c1831a89008abeb9af3</citedby><cites>FETCH-LOGICAL-c385t-a10b454e4aba344fe4581bee78f3ff01ac9a6ea09830f3c1831a89008abeb9af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghorbani, Parsa Hossein</creatorcontrib><title>Electroweak phase transition in the scale invariant standard model</title><title>Physical review. D</title><description>In an extension to the scale invariant standard model by two real singlet scalars s and s′ in addition to the Higgs field, we investigate the strong first-order electroweak phase transition as a requirement for baryogenesis. This is the minimal extension to the scale invariant standard model with two extra degrees of freedom that possesses the physical Higgs mass of 125 GeV. The scalar s′ being stable because of the Z2 discrete symmetry is taken as the dark matter candidate. We then show that the electroweak phase transition is strongly first order, the dark matter relic density takes the desired value ΩDMh2 ∼ 0.11, and the constraints from direct detection experiments are respected only if ms′ ≡ mDM ≳ 4.5 TeV. The model also puts a lower bound on the scalon mass, ms ≳ 200 GeV.</description><subject>Cosmology</subject><subject>Dark matter</subject><subject>Electroweak model</subject><subject>Invariants</subject><subject>Lower bounds</subject><subject>Phase transitions</subject><subject>Scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLA0EQhAdRMMT8AU8Dnjd27-xj5qgxPiCgiJ6H3k0P2bjZjTOTSP69K1FPXV0UVfAJcYkwRQR1_bI6hFfe302NHowcsDgRozQrIQFIzem_RjgXkxDWMMgCTIk4Erfzluvo-y-mD7ldUWAZPXWhiU3fyaaTccUy1NTy8OzJN9RFGSJ1S_JLuemX3F6IM0dt4MnvHYv3-_nb7DFZPD88zW4WSa10HhNCqLI844wqUlnmOMs1Vsyldso5QKoNFUxgtAKnatQKSRsATRVXhpwai6tj79b3nzsO0a77ne-GSZtimaIqMC-GVHpM1b4PwbOzW99syB8sgv3BZf9wWaPtEZf6Bop9X58</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ghorbani, Parsa Hossein</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181201</creationdate><title>Electroweak phase transition in the scale invariant standard model</title><author>Ghorbani, Parsa Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a10b454e4aba344fe4581bee78f3ff01ac9a6ea09830f3c1831a89008abeb9af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cosmology</topic><topic>Dark matter</topic><topic>Electroweak model</topic><topic>Invariants</topic><topic>Lower bounds</topic><topic>Phase transitions</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbani, Parsa Hossein</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbani, Parsa Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroweak phase transition in the scale invariant standard model</atitle><jtitle>Physical review. D</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>98</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115016</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>In an extension to the scale invariant standard model by two real singlet scalars s and s′ in addition to the Higgs field, we investigate the strong first-order electroweak phase transition as a requirement for baryogenesis. This is the minimal extension to the scale invariant standard model with two extra degrees of freedom that possesses the physical Higgs mass of 125 GeV. The scalar s′ being stable because of the Z2 discrete symmetry is taken as the dark matter candidate. We then show that the electroweak phase transition is strongly first order, the dark matter relic density takes the desired value ΩDMh2 ∼ 0.11, and the constraints from direct detection experiments are respected only if ms′ ≡ mDM ≳ 4.5 TeV. The model also puts a lower bound on the scalon mass, ms ≳ 200 GeV.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.115016</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-12, Vol.98 (11), p.1, Article 115016 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2172136156 |
source | American Physical Society Journals |
subjects | Cosmology Dark matter Electroweak model Invariants Lower bounds Phase transitions Scalars |
title | Electroweak phase transition in the scale invariant standard model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroweak%20phase%20transition%20in%20the%20scale%20invariant%20standard%20model&rft.jtitle=Physical%20review.%20D&rft.au=Ghorbani,%20Parsa%20Hossein&rft.date=2018-12-01&rft.volume=98&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115016&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.115016&rft_dat=%3Cproquest_cross%3E2172136156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172136156&rft_id=info:pmid/&rfr_iscdi=true |