Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys
The oxidation behavior of nanograined and coarse-grained alloys may differ significantly. This empirical observation has been justified on the basis of accelerated grain boundary diffusion. However, thermal destabilization of nanograined microstructures studied in model sputter deposited NiCrAl allo...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2019-01, Vol.34 (1), p.48-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 48 |
container_title | Journal of materials research |
container_volume | 34 |
creator | Shetty, Pralav P. Emigh, Megan G. Krogstad, Jessica A. |
description | The oxidation behavior of nanograined and coarse-grained alloys may differ significantly. This empirical observation has been justified on the basis of accelerated grain boundary diffusion. However, thermal destabilization of nanograined microstructures studied in model sputter deposited NiCrAl alloys progresses concurrently with the onset of oxidation. This phenomenon makes it challenging to pinpoint the specific contribution of the original grain boundary network. In this study, dilute additions of Y are used to delay the onset of microstructural evolution at elevated temperatures through nanocluster formation and grain boundary pinning. The enhanced microstructural stability resulted in measurably different oxide morphologies during the transient stages of oxidation and slower oxidation rates overall. This coupling between the earliest stages of oxidation and microstructural evolution are directly manipulated to study fundamental oxidation processes in sputtered NiCrAl. Insights gained from this study may ultimately be used to develop novel strategies for improved oxidation resistance in structural alloys. |
doi_str_mv | 10.1557/jmr.2018.403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2172110266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_403</cupid><sourcerecordid>2172110266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-68be28188a92312d2fd4be612fac31406571d3fcf2db2bb0132b0d8b78334d43</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7u_AEBt7bmq21mKYNfMOBmVm5C0qRjhjapSQr235thBlyJq_d4nHsfHABuMSpxVTUP-yGUBGFeMkTPwIIgxoqKkvocLBDnrCArzC7BVYx7hHCFGrYAH2s_jb3R0H9bLZP1DgYTbUzStQZKp2H6NGGQPcwnZXubZmgdjOOUkglQm9FHm3LeSed3QVqXd9n3fo7X4KKTfTQ3p7kE2-en7fq12Ly_vK0fN0VLG56KmitDOOZcrgjFRJNOM2VqTDrZUsxQXTVY067tiFZEKYQpUUhz1XBKmWZ0Ce6OtWPwX5OJSez9FFz-KAhuCMaI1HWm7o9UG3yMwXRiDHaQYRYYiYM8keWJgzyR5WW8OOIxY25nwm_pH3x5qpeDClbvzD-BHxn5gcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172110266</pqid></control><display><type>article</type><title>Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys</title><source>SpringerNature Complete Journals</source><source>Cambridge University Press Journals Complete</source><creator>Shetty, Pralav P. ; Emigh, Megan G. ; Krogstad, Jessica A.</creator><creatorcontrib>Shetty, Pralav P. ; Emigh, Megan G. ; Krogstad, Jessica A.</creatorcontrib><description>The oxidation behavior of nanograined and coarse-grained alloys may differ significantly. This empirical observation has been justified on the basis of accelerated grain boundary diffusion. However, thermal destabilization of nanograined microstructures studied in model sputter deposited NiCrAl alloys progresses concurrently with the onset of oxidation. This phenomenon makes it challenging to pinpoint the specific contribution of the original grain boundary network. In this study, dilute additions of Y are used to delay the onset of microstructural evolution at elevated temperatures through nanocluster formation and grain boundary pinning. The enhanced microstructural stability resulted in measurably different oxide morphologies during the transient stages of oxidation and slower oxidation rates overall. This coupling between the earliest stages of oxidation and microstructural evolution are directly manipulated to study fundamental oxidation processes in sputtered NiCrAl. Insights gained from this study may ultimately be used to develop novel strategies for improved oxidation resistance in structural alloys.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.403</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloy development ; Alloys ; Alumina ; Aluminum ; Applied and Technical Physics ; Biomaterials ; Destabilization ; Ductility ; Early Career Scholars in Materials Science 2019 ; Evolution ; Grain boundaries ; Grain boundary diffusion ; Growth rate ; Heat ; High temperature ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Microscopy ; Microstructure ; Morphology ; Nanotechnology ; Oxidation ; Oxidation resistance ; Temperature ; Thermal resistance ; Thermal stability</subject><ispartof>Journal of materials research, 2019-01, Vol.34 (1), p.48-57</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><rights>Copyright © Materials Research Society 2018 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (the “License”) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-68be28188a92312d2fd4be612fac31406571d3fcf2db2bb0132b0d8b78334d43</citedby><cites>FETCH-LOGICAL-c378t-68be28188a92312d2fd4be612fac31406571d3fcf2db2bb0132b0d8b78334d43</cites><orcidid>0000-0003-0628-0501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.403$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088429141800403X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Shetty, Pralav P.</creatorcontrib><creatorcontrib>Emigh, Megan G.</creatorcontrib><creatorcontrib>Krogstad, Jessica A.</creatorcontrib><title>Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>The oxidation behavior of nanograined and coarse-grained alloys may differ significantly. This empirical observation has been justified on the basis of accelerated grain boundary diffusion. However, thermal destabilization of nanograined microstructures studied in model sputter deposited NiCrAl alloys progresses concurrently with the onset of oxidation. This phenomenon makes it challenging to pinpoint the specific contribution of the original grain boundary network. In this study, dilute additions of Y are used to delay the onset of microstructural evolution at elevated temperatures through nanocluster formation and grain boundary pinning. The enhanced microstructural stability resulted in measurably different oxide morphologies during the transient stages of oxidation and slower oxidation rates overall. This coupling between the earliest stages of oxidation and microstructural evolution are directly manipulated to study fundamental oxidation processes in sputtered NiCrAl. Insights gained from this study may ultimately be used to develop novel strategies for improved oxidation resistance in structural alloys.</description><subject>Alloy development</subject><subject>Alloys</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Destabilization</subject><subject>Ductility</subject><subject>Early Career Scholars in Materials Science 2019</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain boundary diffusion</subject><subject>Growth rate</subject><subject>Heat</subject><subject>High temperature</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Temperature</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAURYMoOI7u_AEBt7bmq21mKYNfMOBmVm5C0qRjhjapSQr235thBlyJq_d4nHsfHABuMSpxVTUP-yGUBGFeMkTPwIIgxoqKkvocLBDnrCArzC7BVYx7hHCFGrYAH2s_jb3R0H9bLZP1DgYTbUzStQZKp2H6NGGQPcwnZXubZmgdjOOUkglQm9FHm3LeSed3QVqXd9n3fo7X4KKTfTQ3p7kE2-en7fq12Ly_vK0fN0VLG56KmitDOOZcrgjFRJNOM2VqTDrZUsxQXTVY067tiFZEKYQpUUhz1XBKmWZ0Ce6OtWPwX5OJSez9FFz-KAhuCMaI1HWm7o9UG3yMwXRiDHaQYRYYiYM8keWJgzyR5WW8OOIxY25nwm_pH3x5qpeDClbvzD-BHxn5gcI</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Shetty, Pralav P.</creator><creator>Emigh, Megan G.</creator><creator>Krogstad, Jessica A.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>IKXGN</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0628-0501</orcidid></search><sort><creationdate>20190114</creationdate><title>Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys</title><author>Shetty, Pralav P. ; Emigh, Megan G. ; Krogstad, Jessica A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-68be28188a92312d2fd4be612fac31406571d3fcf2db2bb0132b0d8b78334d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy development</topic><topic>Alloys</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Destabilization</topic><topic>Ductility</topic><topic>Early Career Scholars in Materials Science 2019</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain boundary diffusion</topic><topic>Growth rate</topic><topic>Heat</topic><topic>High temperature</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Temperature</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shetty, Pralav P.</creatorcontrib><creatorcontrib>Emigh, Megan G.</creatorcontrib><creatorcontrib>Krogstad, Jessica A.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shetty, Pralav P.</au><au>Emigh, Megan G.</au><au>Krogstad, Jessica A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-01-14</date><risdate>2019</risdate><volume>34</volume><issue>1</issue><spage>48</spage><epage>57</epage><pages>48-57</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The oxidation behavior of nanograined and coarse-grained alloys may differ significantly. This empirical observation has been justified on the basis of accelerated grain boundary diffusion. However, thermal destabilization of nanograined microstructures studied in model sputter deposited NiCrAl alloys progresses concurrently with the onset of oxidation. This phenomenon makes it challenging to pinpoint the specific contribution of the original grain boundary network. In this study, dilute additions of Y are used to delay the onset of microstructural evolution at elevated temperatures through nanocluster formation and grain boundary pinning. The enhanced microstructural stability resulted in measurably different oxide morphologies during the transient stages of oxidation and slower oxidation rates overall. This coupling between the earliest stages of oxidation and microstructural evolution are directly manipulated to study fundamental oxidation processes in sputtered NiCrAl. Insights gained from this study may ultimately be used to develop novel strategies for improved oxidation resistance in structural alloys.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.403</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0628-0501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2019-01, Vol.34 (1), p.48-57 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2172110266 |
source | SpringerNature Complete Journals; Cambridge University Press Journals Complete |
subjects | Alloy development Alloys Alumina Aluminum Applied and Technical Physics Biomaterials Destabilization Ductility Early Career Scholars in Materials Science 2019 Evolution Grain boundaries Grain boundary diffusion Growth rate Heat High temperature Inorganic Chemistry Materials Engineering Materials research Materials Science Microscopy Microstructure Morphology Nanotechnology Oxidation Oxidation resistance Temperature Thermal resistance Thermal stability |
title | Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20oxidation%20resistance%20and%20thermal%20stability%20in%20sputter%20deposited%20nanograined%20alloys&rft.jtitle=Journal%20of%20materials%20research&rft.au=Shetty,%20Pralav%20P.&rft.date=2019-01-14&rft.volume=34&rft.issue=1&rft.spage=48&rft.epage=57&rft.pages=48-57&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.403&rft_dat=%3Cproquest_cross%3E2172110266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172110266&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_403&rfr_iscdi=true |