Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems
The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large hig...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2019, p.1-22 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Annals of operations research |
container_volume | |
creator | Schwarz, Hannes Kotthoff, Lars Hoos, Holger Fichtner, Wolf Bertsch, Valentin |
description | The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems. |
doi_str_mv | 10.1007/s10479-018-3122-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2171091178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2171091178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKs_wF3A9WjuvJJxJ8VHoeBG1-E2TaYpM5MxyQj1f_h_TVtX98E5B85HyC2we2CMPwRgJW8yBiIrIM-z-ozMoOJ51hSFOCczlldlVhUFuyRXIewYYwCimpHfZT96922Hlsatpsr14xQxWjdgR7UxVlk9qD11hobo1BZDtIomS-uxD3QKBydO0fUY9YZi1zpv47ZPSYOx7eSPWY8UB4rj2Fl1vGl0dKOVHqLHzv4kox60b_c07EPUfbgmFwa7oG_-55x8vjx_LN6y1fvrcvG0yhQIEbNGi1pwUTdQYC5MVRoQiqHhaVWal2VdrnNepQMwL3GjRF2JGte1KiE9RTEnd6fcVOhr0iHKnZt8qh5kDhxYA8APKjiplHcheG3k6G2Pfi-ByQN9eaIvE315oC_r4g-IJnvy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171091178</pqid></control><display><type>article</type><title>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Schwarz, Hannes ; Kotthoff, Lars ; Hoos, Holger ; Fichtner, Wolf ; Bertsch, Valentin</creator><creatorcontrib>Schwarz, Hannes ; Kotthoff, Lars ; Hoos, Holger ; Fichtner, Wolf ; Bertsch, Valentin</creatorcontrib><description>The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-018-3122-6</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Alternative energy sources ; Automation ; Computational efficiency ; Computer science ; Computing costs ; Computing time ; Configurations ; Formulations ; High performance computing ; Operations research ; Optimization techniques ; State of the art ; Storage units</subject><ispartof>Annals of operations research, 2019, p.1-22</ispartof><rights>Annals of Operations Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</citedby><cites>FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</cites><orcidid>0000-0002-1708-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Schwarz, Hannes</creatorcontrib><creatorcontrib>Kotthoff, Lars</creatorcontrib><creatorcontrib>Hoos, Holger</creatorcontrib><creatorcontrib>Fichtner, Wolf</creatorcontrib><creatorcontrib>Bertsch, Valentin</creatorcontrib><title>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</title><title>Annals of operations research</title><description>The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Automation</subject><subject>Computational efficiency</subject><subject>Computer science</subject><subject>Computing costs</subject><subject>Computing time</subject><subject>Configurations</subject><subject>Formulations</subject><subject>High performance computing</subject><subject>Operations research</subject><subject>Optimization techniques</subject><subject>State of the art</subject><subject>Storage units</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEtLAzEUhYMoWKs_wF3A9WjuvJJxJ8VHoeBG1-E2TaYpM5MxyQj1f_h_TVtX98E5B85HyC2we2CMPwRgJW8yBiIrIM-z-ozMoOJ51hSFOCczlldlVhUFuyRXIewYYwCimpHfZT96922Hlsatpsr14xQxWjdgR7UxVlk9qD11hobo1BZDtIomS-uxD3QKBydO0fUY9YZi1zpv47ZPSYOx7eSPWY8UB4rj2Fl1vGl0dKOVHqLHzv4kox60b_c07EPUfbgmFwa7oG_-55x8vjx_LN6y1fvrcvG0yhQIEbNGi1pwUTdQYC5MVRoQiqHhaVWal2VdrnNepQMwL3GjRF2JGte1KiE9RTEnd6fcVOhr0iHKnZt8qh5kDhxYA8APKjiplHcheG3k6G2Pfi-ByQN9eaIvE315oC_r4g-IJnvy</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Schwarz, Hannes</creator><creator>Kotthoff, Lars</creator><creator>Hoos, Holger</creator><creator>Fichtner, Wolf</creator><creator>Bertsch, Valentin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1708-8948</orcidid></search><sort><creationdate>2019</creationdate><title>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</title><author>Schwarz, Hannes ; Kotthoff, Lars ; Hoos, Holger ; Fichtner, Wolf ; Bertsch, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Automation</topic><topic>Computational efficiency</topic><topic>Computer science</topic><topic>Computing costs</topic><topic>Computing time</topic><topic>Configurations</topic><topic>Formulations</topic><topic>High performance computing</topic><topic>Operations research</topic><topic>Optimization techniques</topic><topic>State of the art</topic><topic>Storage units</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Hannes</creatorcontrib><creatorcontrib>Kotthoff, Lars</creatorcontrib><creatorcontrib>Hoos, Holger</creatorcontrib><creatorcontrib>Fichtner, Wolf</creatorcontrib><creatorcontrib>Bertsch, Valentin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Hannes</au><au>Kotthoff, Lars</au><au>Hoos, Holger</au><au>Fichtner, Wolf</au><au>Bertsch, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</atitle><jtitle>Annals of operations research</jtitle><date>2019</date><risdate>2019</risdate><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10479-018-3122-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-1708-8948</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2019, p.1-22 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_2171091178 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Algorithms Alternative energy sources Automation Computational efficiency Computer science Computing costs Computing time Configurations Formulations High performance computing Operations research Optimization techniques State of the art Storage units |
title | Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20computational%20efficiency%20of%20stochastic%20programs%20using%20automated%20algorithm%20configuration:%20an%20application%20to%20decentralized%20energy%20systems&rft.jtitle=Annals%20of%20operations%20research&rft.au=Schwarz,%20Hannes&rft.date=2019&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-018-3122-6&rft_dat=%3Cproquest_cross%3E2171091178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171091178&rft_id=info:pmid/&rfr_iscdi=true |