Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems

The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2019, p.1-22
Hauptverfasser: Schwarz, Hannes, Kotthoff, Lars, Hoos, Holger, Fichtner, Wolf, Bertsch, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 1
container_title Annals of operations research
container_volume
creator Schwarz, Hannes
Kotthoff, Lars
Hoos, Holger
Fichtner, Wolf
Bertsch, Valentin
description The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.
doi_str_mv 10.1007/s10479-018-3122-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2171091178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2171091178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKs_wF3A9WjuvJJxJ8VHoeBG1-E2TaYpM5MxyQj1f_h_TVtX98E5B85HyC2we2CMPwRgJW8yBiIrIM-z-ozMoOJ51hSFOCczlldlVhUFuyRXIewYYwCimpHfZT96922Hlsatpsr14xQxWjdgR7UxVlk9qD11hobo1BZDtIomS-uxD3QKBydO0fUY9YZi1zpv47ZPSYOx7eSPWY8UB4rj2Fl1vGl0dKOVHqLHzv4kox60b_c07EPUfbgmFwa7oG_-55x8vjx_LN6y1fvrcvG0yhQIEbNGi1pwUTdQYC5MVRoQiqHhaVWal2VdrnNepQMwL3GjRF2JGte1KiE9RTEnd6fcVOhr0iHKnZt8qh5kDhxYA8APKjiplHcheG3k6G2Pfi-ByQN9eaIvE315oC_r4g-IJnvy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171091178</pqid></control><display><type>article</type><title>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Schwarz, Hannes ; Kotthoff, Lars ; Hoos, Holger ; Fichtner, Wolf ; Bertsch, Valentin</creator><creatorcontrib>Schwarz, Hannes ; Kotthoff, Lars ; Hoos, Holger ; Fichtner, Wolf ; Bertsch, Valentin</creatorcontrib><description>The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-018-3122-6</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Alternative energy sources ; Automation ; Computational efficiency ; Computer science ; Computing costs ; Computing time ; Configurations ; Formulations ; High performance computing ; Operations research ; Optimization techniques ; State of the art ; Storage units</subject><ispartof>Annals of operations research, 2019, p.1-22</ispartof><rights>Annals of Operations Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</citedby><cites>FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</cites><orcidid>0000-0002-1708-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Schwarz, Hannes</creatorcontrib><creatorcontrib>Kotthoff, Lars</creatorcontrib><creatorcontrib>Hoos, Holger</creatorcontrib><creatorcontrib>Fichtner, Wolf</creatorcontrib><creatorcontrib>Bertsch, Valentin</creatorcontrib><title>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</title><title>Annals of operations research</title><description>The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Automation</subject><subject>Computational efficiency</subject><subject>Computer science</subject><subject>Computing costs</subject><subject>Computing time</subject><subject>Configurations</subject><subject>Formulations</subject><subject>High performance computing</subject><subject>Operations research</subject><subject>Optimization techniques</subject><subject>State of the art</subject><subject>Storage units</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEtLAzEUhYMoWKs_wF3A9WjuvJJxJ8VHoeBG1-E2TaYpM5MxyQj1f_h_TVtX98E5B85HyC2we2CMPwRgJW8yBiIrIM-z-ozMoOJ51hSFOCczlldlVhUFuyRXIewYYwCimpHfZT96922Hlsatpsr14xQxWjdgR7UxVlk9qD11hobo1BZDtIomS-uxD3QKBydO0fUY9YZi1zpv47ZPSYOx7eSPWY8UB4rj2Fl1vGl0dKOVHqLHzv4kox60b_c07EPUfbgmFwa7oG_-55x8vjx_LN6y1fvrcvG0yhQIEbNGi1pwUTdQYC5MVRoQiqHhaVWal2VdrnNepQMwL3GjRF2JGte1KiE9RTEnd6fcVOhr0iHKnZt8qh5kDhxYA8APKjiplHcheG3k6G2Pfi-ByQN9eaIvE315oC_r4g-IJnvy</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Schwarz, Hannes</creator><creator>Kotthoff, Lars</creator><creator>Hoos, Holger</creator><creator>Fichtner, Wolf</creator><creator>Bertsch, Valentin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1708-8948</orcidid></search><sort><creationdate>2019</creationdate><title>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</title><author>Schwarz, Hannes ; Kotthoff, Lars ; Hoos, Holger ; Fichtner, Wolf ; Bertsch, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-9e868786913a28f54f18c0af7f54ce74464b27554c1a24adc86586ab6c4154c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Automation</topic><topic>Computational efficiency</topic><topic>Computer science</topic><topic>Computing costs</topic><topic>Computing time</topic><topic>Configurations</topic><topic>Formulations</topic><topic>High performance computing</topic><topic>Operations research</topic><topic>Optimization techniques</topic><topic>State of the art</topic><topic>Storage units</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Hannes</creatorcontrib><creatorcontrib>Kotthoff, Lars</creatorcontrib><creatorcontrib>Hoos, Holger</creatorcontrib><creatorcontrib>Fichtner, Wolf</creatorcontrib><creatorcontrib>Bertsch, Valentin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Hannes</au><au>Kotthoff, Lars</au><au>Hoos, Holger</au><au>Fichtner, Wolf</au><au>Bertsch, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems</atitle><jtitle>Annals of operations research</jtitle><date>2019</date><risdate>2019</risdate><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10479-018-3122-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-1708-8948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2019, p.1-22
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_2171091178
source Springer Nature - Complete Springer Journals; Business Source Complete
subjects Algorithms
Alternative energy sources
Automation
Computational efficiency
Computer science
Computing costs
Computing time
Configurations
Formulations
High performance computing
Operations research
Optimization techniques
State of the art
Storage units
title Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20computational%20efficiency%20of%20stochastic%20programs%20using%20automated%20algorithm%20configuration:%20an%20application%20to%20decentralized%20energy%20systems&rft.jtitle=Annals%20of%20operations%20research&rft.au=Schwarz,%20Hannes&rft.date=2019&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-018-3122-6&rft_dat=%3Cproquest_cross%3E2171091178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171091178&rft_id=info:pmid/&rfr_iscdi=true