Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic
According to the Indonesian Central Statistics Agency (BPS, Badan Pusat Statistik), the number of four-wheeled cars and motorcycles in 2016 reached more than 14 million and 105 million each. Hawi et al. describe the smart traffic light for an isolated for-way junction that incorporates Wireless Sens...
Gespeichert in:
Veröffentlicht in: | Telkomnika 2019-02, Vol.17 (1), p.320-327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 1 |
container_start_page | 320 |
container_title | Telkomnika |
container_volume | 17 |
creator | Hartanti, Dian Aziza, Rosida Nur Siswipraptini, Puji Catur |
description | According to the Indonesian Central Statistics Agency (BPS, Badan Pusat Statistik), the number of four-wheeled cars and motorcycles in 2016 reached more than 14 million and 105 million each. Hawi et al. describe the smart traffic light for an isolated for-way junction that incorporates Wireless Sensor Network (WSN) for collecting road traffic data, fuzzy logic control (FLC) for decision making, and a routing algorithm that assigns green light (period) based on data retrieved from FLC. According to research conducted by D. Hartanti et al about crossroads using algorithms and data structures programmed in the Arduino control device system, with the input of maximum speed and length of vehicles it is known that traffic density is seen to increase in the morning and evening [17], Simulation experiments on scale models in detecting the length of the vehicle queue using the help of infrared sensors placed in each intersection path, then applying the Greedy algorithm to help speed up the movement of the green light duration for the path that needs [18], simulation applications of movement and traffic control are used for monitoring queue length and duration of green light in traffic [19]. New Smart Traffic Light Using Traveling Salesman Problem and Greedy Algorithm. in 3rd Asia Future Conference (AFC). |
doi_str_mv | 10.12928/telkomnika.v17i1.10129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2170896937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170896937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5edee94b24a80d38263ffe989579f294761d7b0cb6cfcbccba2ad6a6a36132f63</originalsourceid><addsrcrecordid>eNpFkMtqAjEUhkNpoWJ9hga6HpuLJpNlkV4EwY1dh0wmmUbHyTTJCPr0DWPBA4ez-P9z-wB4xmiOiSDlazLtwR87d1DzE-YOzzHKwh2YEIpIIYig92CCmaBFTvQIZjHuUQ6OyFKUE7Db9skd3UUl5zvoLYxHFRJMQVnrNGxd85MiTB72wZxMd1O07xoTx64huq6BdrhczrD1jdNP4MGqNprZf52C74_33eqr2Gw_16u3TaEJQqlYmtoYsajIQpWopiVh1FojSrHkwhKx4AzXvEK6YtrqSutKEVUzxRRlmBLL6BS8XOf2wf8O-Rq590Po8kpJMEelyD_z7OJXlw4-xmCs7IPLX54lRnKkKG8U5UhRjhTpH2v9a4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170896937</pqid></control><display><type>article</type><title>Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hartanti, Dian ; Aziza, Rosida Nur ; Siswipraptini, Puji Catur</creator><creatorcontrib>Hartanti, Dian ; Aziza, Rosida Nur ; Siswipraptini, Puji Catur</creatorcontrib><description>According to the Indonesian Central Statistics Agency (BPS, Badan Pusat Statistik), the number of four-wheeled cars and motorcycles in 2016 reached more than 14 million and 105 million each. Hawi et al. describe the smart traffic light for an isolated for-way junction that incorporates Wireless Sensor Network (WSN) for collecting road traffic data, fuzzy logic control (FLC) for decision making, and a routing algorithm that assigns green light (period) based on data retrieved from FLC. According to research conducted by D. Hartanti et al about crossroads using algorithms and data structures programmed in the Arduino control device system, with the input of maximum speed and length of vehicles it is known that traffic density is seen to increase in the morning and evening [17], Simulation experiments on scale models in detecting the length of the vehicle queue using the help of infrared sensors placed in each intersection path, then applying the Greedy algorithm to help speed up the movement of the green light duration for the path that needs [18], simulation applications of movement and traffic control are used for monitoring queue length and duration of green light in traffic [19]. New Smart Traffic Light Using Traveling Salesman Problem and Greedy Algorithm. in 3rd Asia Future Conference (AFC).</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v17i1.10129</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Algorithms ; Automobiles ; Computer engineering ; Computer simulation ; Controllers ; Data structures ; Decision making ; Design optimization ; Electronics ; Fuzzy control ; Fuzzy logic ; Greedy algorithms ; Infrared detectors ; Infrastructure ; International conferences ; Motorcycles ; Queues ; Remote sensors ; Roads & highways ; Scale models ; Sensors ; Simulation ; Traffic congestion ; Traffic control ; Traffic flow ; Traffic information ; Traffic signals ; Traffic speed ; Traffic volume ; Traveling salesman problem ; Vehicles ; Wireless networks ; Wireless sensor networks</subject><ispartof>Telkomnika, 2019-02, Vol.17 (1), p.320-327</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-5edee94b24a80d38263ffe989579f294761d7b0cb6cfcbccba2ad6a6a36132f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hartanti, Dian</creatorcontrib><creatorcontrib>Aziza, Rosida Nur</creatorcontrib><creatorcontrib>Siswipraptini, Puji Catur</creatorcontrib><title>Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic</title><title>Telkomnika</title><description>According to the Indonesian Central Statistics Agency (BPS, Badan Pusat Statistik), the number of four-wheeled cars and motorcycles in 2016 reached more than 14 million and 105 million each. Hawi et al. describe the smart traffic light for an isolated for-way junction that incorporates Wireless Sensor Network (WSN) for collecting road traffic data, fuzzy logic control (FLC) for decision making, and a routing algorithm that assigns green light (period) based on data retrieved from FLC. According to research conducted by D. Hartanti et al about crossroads using algorithms and data structures programmed in the Arduino control device system, with the input of maximum speed and length of vehicles it is known that traffic density is seen to increase in the morning and evening [17], Simulation experiments on scale models in detecting the length of the vehicle queue using the help of infrared sensors placed in each intersection path, then applying the Greedy algorithm to help speed up the movement of the green light duration for the path that needs [18], simulation applications of movement and traffic control are used for monitoring queue length and duration of green light in traffic [19]. New Smart Traffic Light Using Traveling Salesman Problem and Greedy Algorithm. in 3rd Asia Future Conference (AFC).</description><subject>Algorithms</subject><subject>Automobiles</subject><subject>Computer engineering</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Data structures</subject><subject>Decision making</subject><subject>Design optimization</subject><subject>Electronics</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Greedy algorithms</subject><subject>Infrared detectors</subject><subject>Infrastructure</subject><subject>International conferences</subject><subject>Motorcycles</subject><subject>Queues</subject><subject>Remote sensors</subject><subject>Roads & highways</subject><subject>Scale models</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Traffic signals</subject><subject>Traffic speed</subject><subject>Traffic volume</subject><subject>Traveling salesman problem</subject><subject>Vehicles</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkMtqAjEUhkNpoWJ9hga6HpuLJpNlkV4EwY1dh0wmmUbHyTTJCPr0DWPBA4ez-P9z-wB4xmiOiSDlazLtwR87d1DzE-YOzzHKwh2YEIpIIYig92CCmaBFTvQIZjHuUQ6OyFKUE7Db9skd3UUl5zvoLYxHFRJMQVnrNGxd85MiTB72wZxMd1O07xoTx64huq6BdrhczrD1jdNP4MGqNprZf52C74_33eqr2Gw_16u3TaEJQqlYmtoYsajIQpWopiVh1FojSrHkwhKx4AzXvEK6YtrqSutKEVUzxRRlmBLL6BS8XOf2wf8O-Rq590Po8kpJMEelyD_z7OJXlw4-xmCs7IPLX54lRnKkKG8U5UhRjhTpH2v9a4w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Hartanti, Dian</creator><creator>Aziza, Rosida Nur</creator><creator>Siswipraptini, Puji Catur</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190201</creationdate><title>Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic</title><author>Hartanti, Dian ; Aziza, Rosida Nur ; Siswipraptini, Puji Catur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5edee94b24a80d38263ffe989579f294761d7b0cb6cfcbccba2ad6a6a36132f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automobiles</topic><topic>Computer engineering</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Data structures</topic><topic>Decision making</topic><topic>Design optimization</topic><topic>Electronics</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Greedy algorithms</topic><topic>Infrared detectors</topic><topic>Infrastructure</topic><topic>International conferences</topic><topic>Motorcycles</topic><topic>Queues</topic><topic>Remote sensors</topic><topic>Roads & highways</topic><topic>Scale models</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Traffic signals</topic><topic>Traffic speed</topic><topic>Traffic volume</topic><topic>Traveling salesman problem</topic><topic>Vehicles</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartanti, Dian</creatorcontrib><creatorcontrib>Aziza, Rosida Nur</creatorcontrib><creatorcontrib>Siswipraptini, Puji Catur</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartanti, Dian</au><au>Aziza, Rosida Nur</au><au>Siswipraptini, Puji Catur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic</atitle><jtitle>Telkomnika</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>17</volume><issue>1</issue><spage>320</spage><epage>327</epage><pages>320-327</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>According to the Indonesian Central Statistics Agency (BPS, Badan Pusat Statistik), the number of four-wheeled cars and motorcycles in 2016 reached more than 14 million and 105 million each. Hawi et al. describe the smart traffic light for an isolated for-way junction that incorporates Wireless Sensor Network (WSN) for collecting road traffic data, fuzzy logic control (FLC) for decision making, and a routing algorithm that assigns green light (period) based on data retrieved from FLC. According to research conducted by D. Hartanti et al about crossroads using algorithms and data structures programmed in the Arduino control device system, with the input of maximum speed and length of vehicles it is known that traffic density is seen to increase in the morning and evening [17], Simulation experiments on scale models in detecting the length of the vehicle queue using the help of infrared sensors placed in each intersection path, then applying the Greedy algorithm to help speed up the movement of the green light duration for the path that needs [18], simulation applications of movement and traffic control are used for monitoring queue length and duration of green light in traffic [19]. New Smart Traffic Light Using Traveling Salesman Problem and Greedy Algorithm. in 3rd Asia Future Conference (AFC).</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v17i1.10129</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1693-6930 |
ispartof | Telkomnika, 2019-02, Vol.17 (1), p.320-327 |
issn | 1693-6930 2302-9293 |
language | eng |
recordid | cdi_proquest_journals_2170896937 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Automobiles Computer engineering Computer simulation Controllers Data structures Decision making Design optimization Electronics Fuzzy control Fuzzy logic Greedy algorithms Infrared detectors Infrastructure International conferences Motorcycles Queues Remote sensors Roads & highways Scale models Sensors Simulation Traffic congestion Traffic control Traffic flow Traffic information Traffic signals Traffic speed Traffic volume Traveling salesman problem Vehicles Wireless networks Wireless sensor networks |
title | Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20smart%20traffic%20lights%20to%20prevent%20traffic%20congestion%20using%20fuzzy%20logic&rft.jtitle=Telkomnika&rft.au=Hartanti,%20Dian&rft.date=2019-02-01&rft.volume=17&rft.issue=1&rft.spage=320&rft.epage=327&rft.pages=320-327&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v17i1.10129&rft_dat=%3Cproquest_cross%3E2170896937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170896937&rft_id=info:pmid/&rfr_iscdi=true |