FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation

Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2019-08, Vol.56 (8), p.5763-5779
Hauptverfasser: Islam, Ariful, Kagawa, Yoshiteru, Miyazaki, Hirofumi, Shil, Subrata Kumar, Umaru, Banlanjo A., Yasumoto, Yuki, Yamamoto, Yui, Owada, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5779
container_issue 8
container_start_page 5763
container_title Molecular neurobiology
container_volume 56
creator Islam, Ariful
Kagawa, Yoshiteru
Miyazaki, Hirofumi
Shil, Subrata Kumar
Umaru, Banlanjo A.
Yasumoto, Yuki
Yamamoto, Yui
Owada, Yuji
description Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this study, we sought to examine the role of FABP7 in primary mouse astrocytes, focusing on its protective effect against reactive oxygen species (ROS) stress. In FABP7 knockout (KO) astrocytes, ROS induction significantly decreased LD accumulation, elevated ROS toxicity, and impaired thioredoxin (TRX) but not peroxiredoxin 1 (PRX1) signalling compared to ROS induction in wild-type astrocytes. Consequently, activation of apoptosis signalling molecules, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and increased expression of cleaved caspase 3 were observed in FABP7 KO astrocytes under ROS stress. N-acetyl L-cysteine (NAC) application successfully rescued the ROS toxicity in FABP7 KO astrocytes. Furthermore, FABP7 overexpression in U87 human glioma cell line revealed higher LD accumulation and higher antioxidant defence enzyme (TRX, TRX reductase 1 [TRXRD1]) expression than mock transfection and protected against apoptosis signalling (p38 MAPK, SAPK/JNK and cleaved caspase 3) activation. Taken together, these data suggest that FABP7 protects astrocytes from ROS toxicity through LD formation, providing new insights linking FABP7, lipid homeostasis, and neuropsychiatric/neurodegenerative disorders, including Alzheimer’s disease and schizophrenia.
doi_str_mv 10.1007/s12035-019-1489-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2170795760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170795760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-8ae6507ffc26bc043806419679ab3512c63fc299752f5e1b05f15389b2899b133</originalsourceid><addsrcrecordid>eNp1kEtPAjEUhRujEUR_gBszievR23b6WiKKj5BAFNfNzNAhQ2A6tsXIv7dkUFeu7uvcc5IPoUsMNxhA3HpMgLIUsEpxJlVKjlAfMxYnLMkx6oNUNBU8kz105v0KgBAM4hT1KHAJXEEfvYyHdzORzJwNpgw-GfrgbLkLJrbLvG58SF6nb8ncftVlHXbJZ50nk7qtF8m9s-3ahGRs3SYPtW3O0UmVr725ONQBeh8_zEdP6WT6-DwaTtIyozKkMjecgaiqkvCihLgDnmHFhcoLyjApOY0npQQjFTO4AFZhRqUqiFSqwJQO0HXn2zr7sTU-6JXduiZGaoIFCMUEh6jCnap01ntnKt26epO7ncag9_R0R09HenpPT5P4c3Vw3hYbs_j9-MEVBaQT-Hhqlsb9Rf_v-g1q83eb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170795760</pqid></control><display><type>article</type><title>FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Islam, Ariful ; Kagawa, Yoshiteru ; Miyazaki, Hirofumi ; Shil, Subrata Kumar ; Umaru, Banlanjo A. ; Yasumoto, Yuki ; Yamamoto, Yui ; Owada, Yuji</creator><creatorcontrib>Islam, Ariful ; Kagawa, Yoshiteru ; Miyazaki, Hirofumi ; Shil, Subrata Kumar ; Umaru, Banlanjo A. ; Yasumoto, Yuki ; Yamamoto, Yui ; Owada, Yuji</creatorcontrib><description>Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this study, we sought to examine the role of FABP7 in primary mouse astrocytes, focusing on its protective effect against reactive oxygen species (ROS) stress. In FABP7 knockout (KO) astrocytes, ROS induction significantly decreased LD accumulation, elevated ROS toxicity, and impaired thioredoxin (TRX) but not peroxiredoxin 1 (PRX1) signalling compared to ROS induction in wild-type astrocytes. Consequently, activation of apoptosis signalling molecules, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and increased expression of cleaved caspase 3 were observed in FABP7 KO astrocytes under ROS stress. N-acetyl L-cysteine (NAC) application successfully rescued the ROS toxicity in FABP7 KO astrocytes. Furthermore, FABP7 overexpression in U87 human glioma cell line revealed higher LD accumulation and higher antioxidant defence enzyme (TRX, TRX reductase 1 [TRXRD1]) expression than mock transfection and protected against apoptosis signalling (p38 MAPK, SAPK/JNK and cleaved caspase 3) activation. Taken together, these data suggest that FABP7 protects astrocytes from ROS toxicity through LD formation, providing new insights linking FABP7, lipid homeostasis, and neuropsychiatric/neurodegenerative disorders, including Alzheimer’s disease and schizophrenia.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-019-1489-2</identifier><identifier>PMID: 30680690</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accumulation ; Acetylcysteine ; Acetylcysteine - pharmacology ; Animals ; Antioxidants ; Antioxidants - metabolism ; Apoptosis ; Apoptosis - drug effects ; Astrocytes ; Astrocytes - drug effects ; Astrocytes - metabolism ; Astrocytes - pathology ; Biomedical and Life Sciences ; Biomedicine ; c-Jun protein ; Caspase ; Caspase-3 ; Cell Biology ; Cell Survival - drug effects ; Cells, Cultured ; Data processing ; Down-Regulation - drug effects ; Fatty Acid-Binding Protein 7 - metabolism ; Fatty acids ; Glioma cells ; Homeostasis ; Humans ; JNK protein ; Kinases ; Lipid Droplets - drug effects ; Lipid Droplets - metabolism ; Lipids ; MAP kinase ; Mental disorders ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria - drug effects ; Mitochondria - metabolism ; Models, Biological ; Neurobiology ; Neurodegenerative diseases ; Neurology ; Neuroprotection - drug effects ; Neurosciences ; Peroxiredoxin ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - toxicity ; Reductase ; Schizophrenia ; Signal Transduction - drug effects ; Stress ; Thioredoxin ; Toxicity ; Transcription factors ; Transfection</subject><ispartof>Molecular neurobiology, 2019-08, Vol.56 (8), p.5763-5779</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Molecular Neurobiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-8ae6507ffc26bc043806419679ab3512c63fc299752f5e1b05f15389b2899b133</citedby><cites>FETCH-LOGICAL-c438t-8ae6507ffc26bc043806419679ab3512c63fc299752f5e1b05f15389b2899b133</cites><orcidid>0000-0002-2045-5374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-019-1489-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-019-1489-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30680690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, Ariful</creatorcontrib><creatorcontrib>Kagawa, Yoshiteru</creatorcontrib><creatorcontrib>Miyazaki, Hirofumi</creatorcontrib><creatorcontrib>Shil, Subrata Kumar</creatorcontrib><creatorcontrib>Umaru, Banlanjo A.</creatorcontrib><creatorcontrib>Yasumoto, Yuki</creatorcontrib><creatorcontrib>Yamamoto, Yui</creatorcontrib><creatorcontrib>Owada, Yuji</creatorcontrib><title>FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this study, we sought to examine the role of FABP7 in primary mouse astrocytes, focusing on its protective effect against reactive oxygen species (ROS) stress. In FABP7 knockout (KO) astrocytes, ROS induction significantly decreased LD accumulation, elevated ROS toxicity, and impaired thioredoxin (TRX) but not peroxiredoxin 1 (PRX1) signalling compared to ROS induction in wild-type astrocytes. Consequently, activation of apoptosis signalling molecules, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and increased expression of cleaved caspase 3 were observed in FABP7 KO astrocytes under ROS stress. N-acetyl L-cysteine (NAC) application successfully rescued the ROS toxicity in FABP7 KO astrocytes. Furthermore, FABP7 overexpression in U87 human glioma cell line revealed higher LD accumulation and higher antioxidant defence enzyme (TRX, TRX reductase 1 [TRXRD1]) expression than mock transfection and protected against apoptosis signalling (p38 MAPK, SAPK/JNK and cleaved caspase 3) activation. Taken together, these data suggest that FABP7 protects astrocytes from ROS toxicity through LD formation, providing new insights linking FABP7, lipid homeostasis, and neuropsychiatric/neurodegenerative disorders, including Alzheimer’s disease and schizophrenia.</description><subject>Accumulation</subject><subject>Acetylcysteine</subject><subject>Acetylcysteine - pharmacology</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Astrocytes</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>c-Jun protein</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Data processing</subject><subject>Down-Regulation - drug effects</subject><subject>Fatty Acid-Binding Protein 7 - metabolism</subject><subject>Fatty acids</subject><subject>Glioma cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Lipid Droplets - drug effects</subject><subject>Lipid Droplets - metabolism</subject><subject>Lipids</subject><subject>MAP kinase</subject><subject>Mental disorders</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuroprotection - drug effects</subject><subject>Neurosciences</subject><subject>Peroxiredoxin</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - toxicity</subject><subject>Reductase</subject><subject>Schizophrenia</subject><subject>Signal Transduction - drug effects</subject><subject>Stress</subject><subject>Thioredoxin</subject><subject>Toxicity</subject><subject>Transcription factors</subject><subject>Transfection</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtPAjEUhRujEUR_gBszievR23b6WiKKj5BAFNfNzNAhQ2A6tsXIv7dkUFeu7uvcc5IPoUsMNxhA3HpMgLIUsEpxJlVKjlAfMxYnLMkx6oNUNBU8kz105v0KgBAM4hT1KHAJXEEfvYyHdzORzJwNpgw-GfrgbLkLJrbLvG58SF6nb8ncftVlHXbJZ50nk7qtF8m9s-3ahGRs3SYPtW3O0UmVr725ONQBeh8_zEdP6WT6-DwaTtIyozKkMjecgaiqkvCihLgDnmHFhcoLyjApOY0npQQjFTO4AFZhRqUqiFSqwJQO0HXn2zr7sTU-6JXduiZGaoIFCMUEh6jCnap01ntnKt26epO7ncag9_R0R09HenpPT5P4c3Vw3hYbs_j9-MEVBaQT-Hhqlsb9Rf_v-g1q83eb</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Islam, Ariful</creator><creator>Kagawa, Yoshiteru</creator><creator>Miyazaki, Hirofumi</creator><creator>Shil, Subrata Kumar</creator><creator>Umaru, Banlanjo A.</creator><creator>Yasumoto, Yuki</creator><creator>Yamamoto, Yui</creator><creator>Owada, Yuji</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2045-5374</orcidid></search><sort><creationdate>20190801</creationdate><title>FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation</title><author>Islam, Ariful ; Kagawa, Yoshiteru ; Miyazaki, Hirofumi ; Shil, Subrata Kumar ; Umaru, Banlanjo A. ; Yasumoto, Yuki ; Yamamoto, Yui ; Owada, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-8ae6507ffc26bc043806419679ab3512c63fc299752f5e1b05f15389b2899b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accumulation</topic><topic>Acetylcysteine</topic><topic>Acetylcysteine - pharmacology</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Astrocytes</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>c-Jun protein</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Data processing</topic><topic>Down-Regulation - drug effects</topic><topic>Fatty Acid-Binding Protein 7 - metabolism</topic><topic>Fatty acids</topic><topic>Glioma cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Lipid Droplets - drug effects</topic><topic>Lipid Droplets - metabolism</topic><topic>Lipids</topic><topic>MAP kinase</topic><topic>Mental disorders</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuroprotection - drug effects</topic><topic>Neurosciences</topic><topic>Peroxiredoxin</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - toxicity</topic><topic>Reductase</topic><topic>Schizophrenia</topic><topic>Signal Transduction - drug effects</topic><topic>Stress</topic><topic>Thioredoxin</topic><topic>Toxicity</topic><topic>Transcription factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Ariful</creatorcontrib><creatorcontrib>Kagawa, Yoshiteru</creatorcontrib><creatorcontrib>Miyazaki, Hirofumi</creatorcontrib><creatorcontrib>Shil, Subrata Kumar</creatorcontrib><creatorcontrib>Umaru, Banlanjo A.</creatorcontrib><creatorcontrib>Yasumoto, Yuki</creatorcontrib><creatorcontrib>Yamamoto, Yui</creatorcontrib><creatorcontrib>Owada, Yuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Ariful</au><au>Kagawa, Yoshiteru</au><au>Miyazaki, Hirofumi</au><au>Shil, Subrata Kumar</au><au>Umaru, Banlanjo A.</au><au>Yasumoto, Yuki</au><au>Yamamoto, Yui</au><au>Owada, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>56</volume><issue>8</issue><spage>5763</spage><epage>5779</epage><pages>5763-5779</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this study, we sought to examine the role of FABP7 in primary mouse astrocytes, focusing on its protective effect against reactive oxygen species (ROS) stress. In FABP7 knockout (KO) astrocytes, ROS induction significantly decreased LD accumulation, elevated ROS toxicity, and impaired thioredoxin (TRX) but not peroxiredoxin 1 (PRX1) signalling compared to ROS induction in wild-type astrocytes. Consequently, activation of apoptosis signalling molecules, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and increased expression of cleaved caspase 3 were observed in FABP7 KO astrocytes under ROS stress. N-acetyl L-cysteine (NAC) application successfully rescued the ROS toxicity in FABP7 KO astrocytes. Furthermore, FABP7 overexpression in U87 human glioma cell line revealed higher LD accumulation and higher antioxidant defence enzyme (TRX, TRX reductase 1 [TRXRD1]) expression than mock transfection and protected against apoptosis signalling (p38 MAPK, SAPK/JNK and cleaved caspase 3) activation. Taken together, these data suggest that FABP7 protects astrocytes from ROS toxicity through LD formation, providing new insights linking FABP7, lipid homeostasis, and neuropsychiatric/neurodegenerative disorders, including Alzheimer’s disease and schizophrenia.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30680690</pmid><doi>10.1007/s12035-019-1489-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2045-5374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2019-08, Vol.56 (8), p.5763-5779
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_journals_2170795760
source MEDLINE; SpringerNature Journals
subjects Accumulation
Acetylcysteine
Acetylcysteine - pharmacology
Animals
Antioxidants
Antioxidants - metabolism
Apoptosis
Apoptosis - drug effects
Astrocytes
Astrocytes - drug effects
Astrocytes - metabolism
Astrocytes - pathology
Biomedical and Life Sciences
Biomedicine
c-Jun protein
Caspase
Caspase-3
Cell Biology
Cell Survival - drug effects
Cells, Cultured
Data processing
Down-Regulation - drug effects
Fatty Acid-Binding Protein 7 - metabolism
Fatty acids
Glioma cells
Homeostasis
Humans
JNK protein
Kinases
Lipid Droplets - drug effects
Lipid Droplets - metabolism
Lipids
MAP kinase
Mental disorders
Mice, Inbred C57BL
Mice, Knockout
Mitochondria - drug effects
Mitochondria - metabolism
Models, Biological
Neurobiology
Neurodegenerative diseases
Neurology
Neuroprotection - drug effects
Neurosciences
Peroxiredoxin
Proteins
Reactive oxygen species
Reactive Oxygen Species - toxicity
Reductase
Schizophrenia
Signal Transduction - drug effects
Stress
Thioredoxin
Toxicity
Transcription factors
Transfection
title FABP7 Protects Astrocytes Against ROS Toxicity via Lipid Droplet Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T02%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FABP7%20Protects%20Astrocytes%20Against%20ROS%20Toxicity%20via%20Lipid%20Droplet%20Formation&rft.jtitle=Molecular%20neurobiology&rft.au=Islam,%20Ariful&rft.date=2019-08-01&rft.volume=56&rft.issue=8&rft.spage=5763&rft.epage=5779&rft.pages=5763-5779&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-019-1489-2&rft_dat=%3Cproquest_cross%3E2170795760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170795760&rft_id=info:pmid/30680690&rfr_iscdi=true