Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference
AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model...
Gespeichert in:
Veröffentlicht in: | ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering Civil Engineering, 2019-06, Vol.5 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering |
container_volume | 5 |
creator | Sundar, V. S Shields, Michael D |
description | AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy. |
doi_str_mv | 10.1061/AJRUA6.0001005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169840753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169840753</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsNRevXgJeJTU3dkkmxxD0VqtKNWel81mUrekSd1NlP57G1KxF08zzPfeg3mEXDI6ZjRit-njYplGY0opozQ8IQPgIvJFFMDp0X5ORs6tO1GQAA-TAXldYGlUZkrT7Ly0UuXOGectnalWXpqrbWO-0HuyZtUd3lpr65Vq0HnfpvnwntuyMZs6x9KbVQVarDRekLNClQ5Hhzkky_u798mDP3-Zzibp3FcceOMniEABdKYpcMCQQsSKOACW54wnmYjDrIAi5qLAECnogINmkaAhJMEecT4k133u1tafLbpGruvW7h9wEliUxAEVYaca9ypta-csFnJrzUbZnWRUdsXJvjh5KG5vuOoNym3wL1KAANbRm1-qj-g_WT8BDXWe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169840753</pqid></control><display><type>article</type><title>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</title><source>ASCE All titles</source><creator>Sundar, V. S ; Shields, Michael D</creator><creatorcontrib>Sundar, V. S ; Shields, Michael D</creatorcontrib><description>AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.</description><identifier>ISSN: 2376-7642</identifier><identifier>EISSN: 2376-7642</identifier><identifier>DOI: 10.1061/AJRUA6.0001005</identifier><language>eng</language><publisher>Reston: American Society of Civil Engineers</publisher><subject>Adaptive sampling ; Civil engineering ; Complex systems ; Computer simulation ; Inference ; Information theory ; Kriging interpolation ; Model accuracy ; Monte Carlo simulation ; Reliability analysis ; Technical Papers</subject><ispartof>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering, 2019-06, Vol.5 (2)</ispartof><rights>2019 American Society of Civil Engineers</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</citedby><cites>FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/AJRUA6.0001005$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/AJRUA6.0001005$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76164,76172</link.rule.ids></links><search><creatorcontrib>Sundar, V. S</creatorcontrib><creatorcontrib>Shields, Michael D</creatorcontrib><title>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</title><title>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</title><addtitle>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering</addtitle><description>AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.</description><subject>Adaptive sampling</subject><subject>Civil engineering</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Inference</subject><subject>Information theory</subject><subject>Kriging interpolation</subject><subject>Model accuracy</subject><subject>Monte Carlo simulation</subject><subject>Reliability analysis</subject><subject>Technical Papers</subject><issn>2376-7642</issn><issn>2376-7642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsNRevXgJeJTU3dkkmxxD0VqtKNWel81mUrekSd1NlP57G1KxF08zzPfeg3mEXDI6ZjRit-njYplGY0opozQ8IQPgIvJFFMDp0X5ORs6tO1GQAA-TAXldYGlUZkrT7Ly0UuXOGectnalWXpqrbWO-0HuyZtUd3lpr65Vq0HnfpvnwntuyMZs6x9KbVQVarDRekLNClQ5Hhzkky_u798mDP3-Zzibp3FcceOMniEABdKYpcMCQQsSKOACW54wnmYjDrIAi5qLAECnogINmkaAhJMEecT4k133u1tafLbpGruvW7h9wEliUxAEVYaca9ypta-csFnJrzUbZnWRUdsXJvjh5KG5vuOoNym3wL1KAANbRm1-qj-g_WT8BDXWe</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Sundar, V. S</creator><creator>Shields, Michael D</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190601</creationdate><title>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</title><author>Sundar, V. S ; Shields, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sampling</topic><topic>Civil engineering</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Inference</topic><topic>Information theory</topic><topic>Kriging interpolation</topic><topic>Model accuracy</topic><topic>Monte Carlo simulation</topic><topic>Reliability analysis</topic><topic>Technical Papers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sundar, V. S</creatorcontrib><creatorcontrib>Shields, Michael D</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundar, V. S</au><au>Shields, Michael D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</atitle><jtitle>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</jtitle><stitle>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>5</volume><issue>2</issue><issn>2376-7642</issn><eissn>2376-7642</eissn><abstract>AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.</abstract><cop>Reston</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/AJRUA6.0001005</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2376-7642 |
ispartof | ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering, 2019-06, Vol.5 (2) |
issn | 2376-7642 2376-7642 |
language | eng |
recordid | cdi_proquest_journals_2169840753 |
source | ASCE All titles |
subjects | Adaptive sampling Civil engineering Complex systems Computer simulation Inference Information theory Kriging interpolation Model accuracy Monte Carlo simulation Reliability analysis Technical Papers |
title | Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20Analysis%20Using%20Adaptive%20Kriging%20Surrogates%20with%20Multimodel%20Inference&rft.jtitle=ASCE-ASME%20journal%20of%20risk%20and%20uncertainty%20in%20engineering%20systems.%20Part%20A,%20Civil%20Engineering&rft.au=Sundar,%20V.%20S&rft.date=2019-06-01&rft.volume=5&rft.issue=2&rft.issn=2376-7642&rft.eissn=2376-7642&rft_id=info:doi/10.1061/AJRUA6.0001005&rft_dat=%3Cproquest_cross%3E2169840753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169840753&rft_id=info:pmid/&rfr_iscdi=true |