Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference

AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering Civil Engineering, 2019-06, Vol.5 (2)
Hauptverfasser: Sundar, V. S, Shields, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering
container_volume 5
creator Sundar, V. S
Shields, Michael D
description AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.
doi_str_mv 10.1061/AJRUA6.0001005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169840753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169840753</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsNRevXgJeJTU3dkkmxxD0VqtKNWel81mUrekSd1NlP57G1KxF08zzPfeg3mEXDI6ZjRit-njYplGY0opozQ8IQPgIvJFFMDp0X5ORs6tO1GQAA-TAXldYGlUZkrT7Ly0UuXOGectnalWXpqrbWO-0HuyZtUd3lpr65Vq0HnfpvnwntuyMZs6x9KbVQVarDRekLNClQ5Hhzkky_u798mDP3-Zzibp3FcceOMniEABdKYpcMCQQsSKOACW54wnmYjDrIAi5qLAECnogINmkaAhJMEecT4k133u1tafLbpGruvW7h9wEliUxAEVYaca9ypta-csFnJrzUbZnWRUdsXJvjh5KG5vuOoNym3wL1KAANbRm1-qj-g_WT8BDXWe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169840753</pqid></control><display><type>article</type><title>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</title><source>ASCE All titles</source><creator>Sundar, V. S ; Shields, Michael D</creator><creatorcontrib>Sundar, V. S ; Shields, Michael D</creatorcontrib><description>AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.</description><identifier>ISSN: 2376-7642</identifier><identifier>EISSN: 2376-7642</identifier><identifier>DOI: 10.1061/AJRUA6.0001005</identifier><language>eng</language><publisher>Reston: American Society of Civil Engineers</publisher><subject>Adaptive sampling ; Civil engineering ; Complex systems ; Computer simulation ; Inference ; Information theory ; Kriging interpolation ; Model accuracy ; Monte Carlo simulation ; Reliability analysis ; Technical Papers</subject><ispartof>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering, 2019-06, Vol.5 (2)</ispartof><rights>2019 American Society of Civil Engineers</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</citedby><cites>FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/AJRUA6.0001005$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/AJRUA6.0001005$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76164,76172</link.rule.ids></links><search><creatorcontrib>Sundar, V. S</creatorcontrib><creatorcontrib>Shields, Michael D</creatorcontrib><title>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</title><title>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</title><addtitle>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering</addtitle><description>AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.</description><subject>Adaptive sampling</subject><subject>Civil engineering</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Inference</subject><subject>Information theory</subject><subject>Kriging interpolation</subject><subject>Model accuracy</subject><subject>Monte Carlo simulation</subject><subject>Reliability analysis</subject><subject>Technical Papers</subject><issn>2376-7642</issn><issn>2376-7642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsNRevXgJeJTU3dkkmxxD0VqtKNWel81mUrekSd1NlP57G1KxF08zzPfeg3mEXDI6ZjRit-njYplGY0opozQ8IQPgIvJFFMDp0X5ORs6tO1GQAA-TAXldYGlUZkrT7Ly0UuXOGectnalWXpqrbWO-0HuyZtUd3lpr65Vq0HnfpvnwntuyMZs6x9KbVQVarDRekLNClQ5Hhzkky_u798mDP3-Zzibp3FcceOMniEABdKYpcMCQQsSKOACW54wnmYjDrIAi5qLAECnogINmkaAhJMEecT4k133u1tafLbpGruvW7h9wEliUxAEVYaca9ypta-csFnJrzUbZnWRUdsXJvjh5KG5vuOoNym3wL1KAANbRm1-qj-g_WT8BDXWe</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Sundar, V. S</creator><creator>Shields, Michael D</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190601</creationdate><title>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</title><author>Sundar, V. S ; Shields, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-9ee2022cbc0232e50261f8421dd139b785bf2f837fe5e02c432c167052945bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sampling</topic><topic>Civil engineering</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Inference</topic><topic>Information theory</topic><topic>Kriging interpolation</topic><topic>Model accuracy</topic><topic>Monte Carlo simulation</topic><topic>Reliability analysis</topic><topic>Technical Papers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sundar, V. S</creatorcontrib><creatorcontrib>Shields, Michael D</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundar, V. S</au><au>Shields, Michael D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference</atitle><jtitle>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</jtitle><stitle>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>5</volume><issue>2</issue><issn>2376-7642</issn><eissn>2376-7642</eissn><abstract>AbstractThis work addresses the issue of model selection in adaptive kriging-based Monte Carlo reliability analysis. It is shown that arbitrary model selection (kriging trend and correlation) can lead to poor probability of failure estimates for complex systems. We propose a method for kriging model development that employs information-theoretic multimodel inference and introduces an averaged kriging model derived from the associated model probabilities. The proposed multimodel kriging model is then integrated into an adaptive sample selection method that merges the surrogate enhanced stochastic search method with a learning function modified from the adaptive kriging—Monte Carlo simulation (AK-MCS) method. The result is an efficient method for a surrogate model–based reliability analysis that converges as fast as, or faster than, the AK-MCS method but with significantly improved robustness providing greater assurance in model accuracy.</abstract><cop>Reston</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/AJRUA6.0001005</doi></addata></record>
fulltext fulltext
identifier ISSN: 2376-7642
ispartof ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering, 2019-06, Vol.5 (2)
issn 2376-7642
2376-7642
language eng
recordid cdi_proquest_journals_2169840753
source ASCE All titles
subjects Adaptive sampling
Civil engineering
Complex systems
Computer simulation
Inference
Information theory
Kriging interpolation
Model accuracy
Monte Carlo simulation
Reliability analysis
Technical Papers
title Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20Analysis%20Using%20Adaptive%20Kriging%20Surrogates%20with%20Multimodel%20Inference&rft.jtitle=ASCE-ASME%20journal%20of%20risk%20and%20uncertainty%20in%20engineering%20systems.%20Part%20A,%20Civil%20Engineering&rft.au=Sundar,%20V.%20S&rft.date=2019-06-01&rft.volume=5&rft.issue=2&rft.issn=2376-7642&rft.eissn=2376-7642&rft_id=info:doi/10.1061/AJRUA6.0001005&rft_dat=%3Cproquest_cross%3E2169840753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169840753&rft_id=info:pmid/&rfr_iscdi=true