Extraordinary Ferromagnetic Coupling and Magnetodielectric Phenomena in NiO Nanoparticles

We intend to understand the ferromagnetism and magnetodielectric (MD) phenomenon in NiO nanoparticles (NPs) with average diameter ~23 nm synthesized by a chemical route. Magnetic studies revealed that NiO NPs are weakly ferromagnetic (FM). Notably, temperature-dependent magnetization studies show a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2019-02, Vol.55 (2), p.1-4
Hauptverfasser: Roy, Subir, Katoch, Rajesh, Angappane, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 2
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 55
creator Roy, Subir
Katoch, Rajesh
Angappane, S.
description We intend to understand the ferromagnetism and magnetodielectric (MD) phenomenon in NiO nanoparticles (NPs) with average diameter ~23 nm synthesized by a chemical route. Magnetic studies revealed that NiO NPs are weakly ferromagnetic (FM). Notably, temperature-dependent magnetization studies show a bifurcation of the FC-ZFC curves, suggesting a competition between FM and antiferromagnetic (AFM) interactions with the blocking temperature ( T_{B} ) at ~210 K. In addition, we observed field-dependent exchange bias effect in the NPs. Furthermore, MD studies revealed that the changes in the dielectric constant and loss induced by the magnetic field are strongly frequency dependent, which originates from the combined effect of extrinsic Maxwell-Wagner polarization along with magnetoresistance. It was found that the magnetoimpedance (MI) changes sign from negative at low frequencies to positive at higher frequencies of an excitation signal. Cole-Cole studies showed that the negative MI at low frequencies arises from FM surface/grain boundary, and positive MI at higher frequencies originates from AFM core of NiO NPs.
doi_str_mv 10.1109/TMAG.2018.2865678
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2169464793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8477150</ieee_id><sourcerecordid>2169464793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-abe27fa1652f5b3150aaa89bda19ee316bb964132c999f36cbcfdf2ba32de6343</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6ROKf4kTjxsapKQeqDQzlwsjbJprhK7eCkEvw9Dq04rXZnZndnCLlndMIYVU_b1XQx4ZTlE57LVGb5BRkxlbCYUqkuyYgGKFaJTK7JTdftQ5ukjI7Ix_y79-B8ZSz4n-gZvXcH2FnsTRnN3LFtjN1FYKto9Td1lcEGy94H-O0TrTughcjYaG020Rqsa8EHaYPdLbmqoenw7lzH5P15vp29xMvN4nU2XcYlV6KPoUCe1cBkyuu0ECylAJCrogKmEAWTRaFkwgQvlVK1kGVR1lXNCxC8QikSMSaPp72td19H7Hq9d0dvw0nNmRwsZ0oEFjuxSu-6zmOtW28OwbJmVA8J6iFBPSSozwkGzcNJYxDxn58nWRa-FL_neG5d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169464793</pqid></control><display><type>article</type><title>Extraordinary Ferromagnetic Coupling and Magnetodielectric Phenomena in NiO Nanoparticles</title><source>IEEE Electronic Library (IEL)</source><creator>Roy, Subir ; Katoch, Rajesh ; Angappane, S.</creator><creatorcontrib>Roy, Subir ; Katoch, Rajesh ; Angappane, S.</creatorcontrib><description>We intend to understand the ferromagnetism and magnetodielectric (MD) phenomenon in NiO nanoparticles (NPs) with average diameter ~23 nm synthesized by a chemical route. Magnetic studies revealed that NiO NPs are weakly ferromagnetic (FM). Notably, temperature-dependent magnetization studies show a bifurcation of the FC-ZFC curves, suggesting a competition between FM and antiferromagnetic (AFM) interactions with the blocking temperature (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;T_{B} &lt;/tex-math&gt;&lt;/inline-formula&gt;) at ~210 K. In addition, we observed field-dependent exchange bias effect in the NPs. Furthermore, MD studies revealed that the changes in the dielectric constant and loss induced by the magnetic field are strongly frequency dependent, which originates from the combined effect of extrinsic Maxwell-Wagner polarization along with magnetoresistance. It was found that the magnetoimpedance (MI) changes sign from negative at low frequencies to positive at higher frequencies of an excitation signal. Cole-Cole studies showed that the negative MI at low frequencies arises from FM surface/grain boundary, and positive MI at higher frequencies originates from AFM core of NiO NPs.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2865678</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antiferromagnetism ; Bifurcations ; Chemical synthesis ; Dielectric relaxation ; Dielectric strength ; Ferromagnetism ; Frequency modulation ; Grain boundaries ; Low frequencies ; Magnetic cores ; Magnetic hysteresis ; Magnetic properties ; Magnetic tunneling ; Magnetism ; magnetodielectric (MD) ; Magnetoimpedance ; magnetoimpedance (MI) ; Magnetoresistance ; Magnetoresistivity ; Nanoparticles ; nanoparticles (NPs) ; Nickel oxides ; Organic chemistry ; Surface impedance ; Temperature dependence</subject><ispartof>IEEE transactions on magnetics, 2019-02, Vol.55 (2), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-abe27fa1652f5b3150aaa89bda19ee316bb964132c999f36cbcfdf2ba32de6343</citedby><cites>FETCH-LOGICAL-c293t-abe27fa1652f5b3150aaa89bda19ee316bb964132c999f36cbcfdf2ba32de6343</cites><orcidid>0000-0001-8475-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8477150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8477150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Subir</creatorcontrib><creatorcontrib>Katoch, Rajesh</creatorcontrib><creatorcontrib>Angappane, S.</creatorcontrib><title>Extraordinary Ferromagnetic Coupling and Magnetodielectric Phenomena in NiO Nanoparticles</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We intend to understand the ferromagnetism and magnetodielectric (MD) phenomenon in NiO nanoparticles (NPs) with average diameter ~23 nm synthesized by a chemical route. Magnetic studies revealed that NiO NPs are weakly ferromagnetic (FM). Notably, temperature-dependent magnetization studies show a bifurcation of the FC-ZFC curves, suggesting a competition between FM and antiferromagnetic (AFM) interactions with the blocking temperature (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;T_{B} &lt;/tex-math&gt;&lt;/inline-formula&gt;) at ~210 K. In addition, we observed field-dependent exchange bias effect in the NPs. Furthermore, MD studies revealed that the changes in the dielectric constant and loss induced by the magnetic field are strongly frequency dependent, which originates from the combined effect of extrinsic Maxwell-Wagner polarization along with magnetoresistance. It was found that the magnetoimpedance (MI) changes sign from negative at low frequencies to positive at higher frequencies of an excitation signal. Cole-Cole studies showed that the negative MI at low frequencies arises from FM surface/grain boundary, and positive MI at higher frequencies originates from AFM core of NiO NPs.</description><subject>Antiferromagnetism</subject><subject>Bifurcations</subject><subject>Chemical synthesis</subject><subject>Dielectric relaxation</subject><subject>Dielectric strength</subject><subject>Ferromagnetism</subject><subject>Frequency modulation</subject><subject>Grain boundaries</subject><subject>Low frequencies</subject><subject>Magnetic cores</subject><subject>Magnetic hysteresis</subject><subject>Magnetic properties</subject><subject>Magnetic tunneling</subject><subject>Magnetism</subject><subject>magnetodielectric (MD)</subject><subject>Magnetoimpedance</subject><subject>magnetoimpedance (MI)</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Nanoparticles</subject><subject>nanoparticles (NPs)</subject><subject>Nickel oxides</subject><subject>Organic chemistry</subject><subject>Surface impedance</subject><subject>Temperature dependence</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIHIC6ROKf4kTjxsapKQeqDQzlwsjbJprhK7eCkEvw9Dq04rXZnZndnCLlndMIYVU_b1XQx4ZTlE57LVGb5BRkxlbCYUqkuyYgGKFaJTK7JTdftQ5ukjI7Ix_y79-B8ZSz4n-gZvXcH2FnsTRnN3LFtjN1FYKto9Td1lcEGy94H-O0TrTughcjYaG020Rqsa8EHaYPdLbmqoenw7lzH5P15vp29xMvN4nU2XcYlV6KPoUCe1cBkyuu0ECylAJCrogKmEAWTRaFkwgQvlVK1kGVR1lXNCxC8QikSMSaPp72td19H7Hq9d0dvw0nNmRwsZ0oEFjuxSu-6zmOtW28OwbJmVA8J6iFBPSSozwkGzcNJYxDxn58nWRa-FL_neG5d</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Roy, Subir</creator><creator>Katoch, Rajesh</creator><creator>Angappane, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8475-0404</orcidid></search><sort><creationdate>20190201</creationdate><title>Extraordinary Ferromagnetic Coupling and Magnetodielectric Phenomena in NiO Nanoparticles</title><author>Roy, Subir ; Katoch, Rajesh ; Angappane, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-abe27fa1652f5b3150aaa89bda19ee316bb964132c999f36cbcfdf2ba32de6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Bifurcations</topic><topic>Chemical synthesis</topic><topic>Dielectric relaxation</topic><topic>Dielectric strength</topic><topic>Ferromagnetism</topic><topic>Frequency modulation</topic><topic>Grain boundaries</topic><topic>Low frequencies</topic><topic>Magnetic cores</topic><topic>Magnetic hysteresis</topic><topic>Magnetic properties</topic><topic>Magnetic tunneling</topic><topic>Magnetism</topic><topic>magnetodielectric (MD)</topic><topic>Magnetoimpedance</topic><topic>magnetoimpedance (MI)</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Nanoparticles</topic><topic>nanoparticles (NPs)</topic><topic>Nickel oxides</topic><topic>Organic chemistry</topic><topic>Surface impedance</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Subir</creatorcontrib><creatorcontrib>Katoch, Rajesh</creatorcontrib><creatorcontrib>Angappane, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Subir</au><au>Katoch, Rajesh</au><au>Angappane, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraordinary Ferromagnetic Coupling and Magnetodielectric Phenomena in NiO Nanoparticles</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We intend to understand the ferromagnetism and magnetodielectric (MD) phenomenon in NiO nanoparticles (NPs) with average diameter ~23 nm synthesized by a chemical route. Magnetic studies revealed that NiO NPs are weakly ferromagnetic (FM). Notably, temperature-dependent magnetization studies show a bifurcation of the FC-ZFC curves, suggesting a competition between FM and antiferromagnetic (AFM) interactions with the blocking temperature (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;T_{B} &lt;/tex-math&gt;&lt;/inline-formula&gt;) at ~210 K. In addition, we observed field-dependent exchange bias effect in the NPs. Furthermore, MD studies revealed that the changes in the dielectric constant and loss induced by the magnetic field are strongly frequency dependent, which originates from the combined effect of extrinsic Maxwell-Wagner polarization along with magnetoresistance. It was found that the magnetoimpedance (MI) changes sign from negative at low frequencies to positive at higher frequencies of an excitation signal. Cole-Cole studies showed that the negative MI at low frequencies arises from FM surface/grain boundary, and positive MI at higher frequencies originates from AFM core of NiO NPs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2865678</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8475-0404</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2019-02, Vol.55 (2), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2169464793
source IEEE Electronic Library (IEL)
subjects Antiferromagnetism
Bifurcations
Chemical synthesis
Dielectric relaxation
Dielectric strength
Ferromagnetism
Frequency modulation
Grain boundaries
Low frequencies
Magnetic cores
Magnetic hysteresis
Magnetic properties
Magnetic tunneling
Magnetism
magnetodielectric (MD)
Magnetoimpedance
magnetoimpedance (MI)
Magnetoresistance
Magnetoresistivity
Nanoparticles
nanoparticles (NPs)
Nickel oxides
Organic chemistry
Surface impedance
Temperature dependence
title Extraordinary Ferromagnetic Coupling and Magnetodielectric Phenomena in NiO Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraordinary%20Ferromagnetic%20Coupling%20and%20Magnetodielectric%20Phenomena%20in%20NiO%20Nanoparticles&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Roy,%20Subir&rft.date=2019-02-01&rft.volume=55&rft.issue=2&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2865678&rft_dat=%3Cproquest_RIE%3E2169464793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169464793&rft_id=info:pmid/&rft_ieee_id=8477150&rfr_iscdi=true