An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and } Optimization
Graphics workloads make highly dynamic use of resources such as execution units (EUs), and thus can benefit from fast, fine-grain dynamic voltage and frequency scaling (DVFS) and retentive sleep. This paper presents a 14-nm graphics processing unit (GPU) prototype with modified EUs which include an...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2019-01, Vol.54 (1), p.144-157 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | IEEE journal of solid-state circuits |
container_volume | 54 |
creator | Meinerzhagen, Pascal A. Tokunaga, Carlos Malavasi, Andres Vaidya, Vaibhav Mendon, Ashwin Mathaikutty, D. Kulkarni, Jaydeep Augustine, Charles Cho, Minki Kim, Stephen T. Matthew, George E. Jain, Rinkle Ryan, Joseph Peng, Chung-Ching Paul, Somnath Vangal, Sriram Perez Esparza, Brando Cuellar, L. Woodman, M. Iyer, Bala Maiyuran, Subramaniam Chinya, G. Zou, Xiang Liao, Yuyun Ravichandran, Krishnan Wang, H. Khellah, Muhammad M. Tschanz, James W. De, Vivek |
description | Graphics workloads make highly dynamic use of resources such as execution units (EUs), and thus can benefit from fast, fine-grain dynamic voltage and frequency scaling (DVFS) and retentive sleep. This paper presents a 14-nm graphics processing unit (GPU) prototype with modified EUs which include an integrated voltage regulator (IVR). The IVR enables energy-efficient EU turbo operation, data retention, and V_{\text {MIN}} optimization per EU. Silicon measurements show that IVR-enabled EU turbo operation offers up to 32% (average 29%) energy reduction at constant performance. |
doi_str_mv | 10.1109/JSSC.2018.2875097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2169457610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8527541</ieee_id><sourcerecordid>2169457610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1380-84bcbbfae3d71589fc7b18e2680f8e4804b8097e2d95b3c60842ad6e53928f9b3</originalsourceid><addsrcrecordid>eNo9kd1O2zAUxy0EEqXsASZuLHGLO9uxE-cSlbZjYipaGNpd5CTHwah1gu0igcSr7FnnqmhXR0f_jyOdH0JfGZ0xRstvP6pqPuOUqRlXhaRlcYQmTEpFWJH9OUYTmiRSckpP0VkIz2kVQrEJ-nvt8MKB79_IwhjbWnARr7wen2wb8L0fWghh8Ng6zARxW_zgLVnpCHj-c13hJei489b1-NZF6H0SOvw4bKLuAf-CfrfRcfABm1SxtA5Iqk5VN4_L6irpMV2zr4CrDcB4hbXr8Adej9Fu7buOdnDn6MToTYAvn3OKfi8XD_Pv5G69up1f35GWZYoSJZq2aYyGrCuYVKVpi4Yp4LmiRoFQVDQq_QR4V8oma3OqBNddDjIruTJlk03R5aF39MPLDkKsn4edd-lkzVleClnkjCYXO7haP4TgwdSjt1vt32pG6z2Geo-h3mOoPzGkzMUhYwHgv19JXkjBsn_kZYPf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169457610</pqid></control><display><type>article</type><title>An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and } Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Meinerzhagen, Pascal A. ; Tokunaga, Carlos ; Malavasi, Andres ; Vaidya, Vaibhav ; Mendon, Ashwin ; Mathaikutty, D. ; Kulkarni, Jaydeep ; Augustine, Charles ; Cho, Minki ; Kim, Stephen T. ; Matthew, George E. ; Jain, Rinkle ; Ryan, Joseph ; Peng, Chung-Ching ; Paul, Somnath ; Vangal, Sriram ; Perez Esparza, Brando ; Cuellar, L. ; Woodman, M. ; Iyer, Bala ; Maiyuran, Subramaniam ; Chinya, G. ; Zou, Xiang ; Liao, Yuyun ; Ravichandran, Krishnan ; Wang, H. ; Khellah, Muhammad M. ; Tschanz, James W. ; De, Vivek</creator><creatorcontrib>Meinerzhagen, Pascal A. ; Tokunaga, Carlos ; Malavasi, Andres ; Vaidya, Vaibhav ; Mendon, Ashwin ; Mathaikutty, D. ; Kulkarni, Jaydeep ; Augustine, Charles ; Cho, Minki ; Kim, Stephen T. ; Matthew, George E. ; Jain, Rinkle ; Ryan, Joseph ; Peng, Chung-Ching ; Paul, Somnath ; Vangal, Sriram ; Perez Esparza, Brando ; Cuellar, L. ; Woodman, M. ; Iyer, Bala ; Maiyuran, Subramaniam ; Chinya, G. ; Zou, Xiang ; Liao, Yuyun ; Ravichandran, Krishnan ; Wang, H. ; Khellah, Muhammad M. ; Tschanz, James W. ; De, Vivek</creatorcontrib><description>Graphics workloads make highly dynamic use of resources such as execution units (EUs), and thus can benefit from fast, fine-grain dynamic voltage and frequency scaling (DVFS) and retentive sleep. This paper presents a 14-nm graphics processing unit (GPU) prototype with modified EUs which include an integrated voltage regulator (IVR). The IVR enables energy-efficient EU turbo operation, data retention, and <inline-formula> <tex-math notation="LaTeX">V_{\text {MIN}} </tex-math></inline-formula> optimization per EU. Silicon measurements show that IVR-enabled EU turbo operation offers up to 32% (average 29%) energy reduction at constant performance.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2018.2875097</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V MIN optimization ; Clocks ; CMOS ; Dynamic scheduling ; Energy-efficient graphics processing unit (GPU) ; fine-grain dynamic voltage and frequency scaling (DVFS) ; Graphics boards ; Graphics processing units ; integrated voltage regulators (IVRs) ; Media ; Microprocessors ; Optimization ; Prototypes ; retentive sleep ; Sleep ; Voltage control ; Voltage regulators</subject><ispartof>IEEE journal of solid-state circuits, 2019-01, Vol.54 (1), p.144-157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1380-84bcbbfae3d71589fc7b18e2680f8e4804b8097e2d95b3c60842ad6e53928f9b3</citedby><cites>FETCH-LOGICAL-c1380-84bcbbfae3d71589fc7b18e2680f8e4804b8097e2d95b3c60842ad6e53928f9b3</cites><orcidid>0000-0001-5207-1079 ; 0000-0003-3745-122X ; 0000-0002-5444-5772 ; 0000-0002-0258-6776 ; 0000-0003-0317-4332 ; 0000-0003-2271-4314 ; 0000-0001-9908-669X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8527541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8527541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meinerzhagen, Pascal A.</creatorcontrib><creatorcontrib>Tokunaga, Carlos</creatorcontrib><creatorcontrib>Malavasi, Andres</creatorcontrib><creatorcontrib>Vaidya, Vaibhav</creatorcontrib><creatorcontrib>Mendon, Ashwin</creatorcontrib><creatorcontrib>Mathaikutty, D.</creatorcontrib><creatorcontrib>Kulkarni, Jaydeep</creatorcontrib><creatorcontrib>Augustine, Charles</creatorcontrib><creatorcontrib>Cho, Minki</creatorcontrib><creatorcontrib>Kim, Stephen T.</creatorcontrib><creatorcontrib>Matthew, George E.</creatorcontrib><creatorcontrib>Jain, Rinkle</creatorcontrib><creatorcontrib>Ryan, Joseph</creatorcontrib><creatorcontrib>Peng, Chung-Ching</creatorcontrib><creatorcontrib>Paul, Somnath</creatorcontrib><creatorcontrib>Vangal, Sriram</creatorcontrib><creatorcontrib>Perez Esparza, Brando</creatorcontrib><creatorcontrib>Cuellar, L.</creatorcontrib><creatorcontrib>Woodman, M.</creatorcontrib><creatorcontrib>Iyer, Bala</creatorcontrib><creatorcontrib>Maiyuran, Subramaniam</creatorcontrib><creatorcontrib>Chinya, G.</creatorcontrib><creatorcontrib>Zou, Xiang</creatorcontrib><creatorcontrib>Liao, Yuyun</creatorcontrib><creatorcontrib>Ravichandran, Krishnan</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Khellah, Muhammad M.</creatorcontrib><creatorcontrib>Tschanz, James W.</creatorcontrib><creatorcontrib>De, Vivek</creatorcontrib><title>An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and } Optimization</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Graphics workloads make highly dynamic use of resources such as execution units (EUs), and thus can benefit from fast, fine-grain dynamic voltage and frequency scaling (DVFS) and retentive sleep. This paper presents a 14-nm graphics processing unit (GPU) prototype with modified EUs which include an integrated voltage regulator (IVR). The IVR enables energy-efficient EU turbo operation, data retention, and <inline-formula> <tex-math notation="LaTeX">V_{\text {MIN}} </tex-math></inline-formula> optimization per EU. Silicon measurements show that IVR-enabled EU turbo operation offers up to 32% (average 29%) energy reduction at constant performance.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V MIN optimization</subject><subject>Clocks</subject><subject>CMOS</subject><subject>Dynamic scheduling</subject><subject>Energy-efficient graphics processing unit (GPU)</subject><subject>fine-grain dynamic voltage and frequency scaling (DVFS)</subject><subject>Graphics boards</subject><subject>Graphics processing units</subject><subject>integrated voltage regulators (IVRs)</subject><subject>Media</subject><subject>Microprocessors</subject><subject>Optimization</subject><subject>Prototypes</subject><subject>retentive sleep</subject><subject>Sleep</subject><subject>Voltage control</subject><subject>Voltage regulators</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kd1O2zAUxy0EEqXsASZuLHGLO9uxE-cSlbZjYipaGNpd5CTHwah1gu0igcSr7FnnqmhXR0f_jyOdH0JfGZ0xRstvP6pqPuOUqRlXhaRlcYQmTEpFWJH9OUYTmiRSckpP0VkIz2kVQrEJ-nvt8MKB79_IwhjbWnARr7wen2wb8L0fWghh8Ng6zARxW_zgLVnpCHj-c13hJei489b1-NZF6H0SOvw4bKLuAf-CfrfRcfABm1SxtA5Iqk5VN4_L6irpMV2zr4CrDcB4hbXr8Adej9Fu7buOdnDn6MToTYAvn3OKfi8XD_Pv5G69up1f35GWZYoSJZq2aYyGrCuYVKVpi4Yp4LmiRoFQVDQq_QR4V8oma3OqBNddDjIruTJlk03R5aF39MPLDkKsn4edd-lkzVleClnkjCYXO7haP4TgwdSjt1vt32pG6z2Geo-h3mOoPzGkzMUhYwHgv19JXkjBsn_kZYPf</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Meinerzhagen, Pascal A.</creator><creator>Tokunaga, Carlos</creator><creator>Malavasi, Andres</creator><creator>Vaidya, Vaibhav</creator><creator>Mendon, Ashwin</creator><creator>Mathaikutty, D.</creator><creator>Kulkarni, Jaydeep</creator><creator>Augustine, Charles</creator><creator>Cho, Minki</creator><creator>Kim, Stephen T.</creator><creator>Matthew, George E.</creator><creator>Jain, Rinkle</creator><creator>Ryan, Joseph</creator><creator>Peng, Chung-Ching</creator><creator>Paul, Somnath</creator><creator>Vangal, Sriram</creator><creator>Perez Esparza, Brando</creator><creator>Cuellar, L.</creator><creator>Woodman, M.</creator><creator>Iyer, Bala</creator><creator>Maiyuran, Subramaniam</creator><creator>Chinya, G.</creator><creator>Zou, Xiang</creator><creator>Liao, Yuyun</creator><creator>Ravichandran, Krishnan</creator><creator>Wang, H.</creator><creator>Khellah, Muhammad M.</creator><creator>Tschanz, James W.</creator><creator>De, Vivek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5207-1079</orcidid><orcidid>https://orcid.org/0000-0003-3745-122X</orcidid><orcidid>https://orcid.org/0000-0002-5444-5772</orcidid><orcidid>https://orcid.org/0000-0002-0258-6776</orcidid><orcidid>https://orcid.org/0000-0003-0317-4332</orcidid><orcidid>https://orcid.org/0000-0003-2271-4314</orcidid><orcidid>https://orcid.org/0000-0001-9908-669X</orcidid></search><sort><creationdate>201901</creationdate><title>An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and } Optimization</title><author>Meinerzhagen, Pascal A. ; Tokunaga, Carlos ; Malavasi, Andres ; Vaidya, Vaibhav ; Mendon, Ashwin ; Mathaikutty, D. ; Kulkarni, Jaydeep ; Augustine, Charles ; Cho, Minki ; Kim, Stephen T. ; Matthew, George E. ; Jain, Rinkle ; Ryan, Joseph ; Peng, Chung-Ching ; Paul, Somnath ; Vangal, Sriram ; Perez Esparza, Brando ; Cuellar, L. ; Woodman, M. ; Iyer, Bala ; Maiyuran, Subramaniam ; Chinya, G. ; Zou, Xiang ; Liao, Yuyun ; Ravichandran, Krishnan ; Wang, H. ; Khellah, Muhammad M. ; Tschanz, James W. ; De, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1380-84bcbbfae3d71589fc7b18e2680f8e4804b8097e2d95b3c60842ad6e53928f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V MIN optimization</topic><topic>Clocks</topic><topic>CMOS</topic><topic>Dynamic scheduling</topic><topic>Energy-efficient graphics processing unit (GPU)</topic><topic>fine-grain dynamic voltage and frequency scaling (DVFS)</topic><topic>Graphics boards</topic><topic>Graphics processing units</topic><topic>integrated voltage regulators (IVRs)</topic><topic>Media</topic><topic>Microprocessors</topic><topic>Optimization</topic><topic>Prototypes</topic><topic>retentive sleep</topic><topic>Sleep</topic><topic>Voltage control</topic><topic>Voltage regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meinerzhagen, Pascal A.</creatorcontrib><creatorcontrib>Tokunaga, Carlos</creatorcontrib><creatorcontrib>Malavasi, Andres</creatorcontrib><creatorcontrib>Vaidya, Vaibhav</creatorcontrib><creatorcontrib>Mendon, Ashwin</creatorcontrib><creatorcontrib>Mathaikutty, D.</creatorcontrib><creatorcontrib>Kulkarni, Jaydeep</creatorcontrib><creatorcontrib>Augustine, Charles</creatorcontrib><creatorcontrib>Cho, Minki</creatorcontrib><creatorcontrib>Kim, Stephen T.</creatorcontrib><creatorcontrib>Matthew, George E.</creatorcontrib><creatorcontrib>Jain, Rinkle</creatorcontrib><creatorcontrib>Ryan, Joseph</creatorcontrib><creatorcontrib>Peng, Chung-Ching</creatorcontrib><creatorcontrib>Paul, Somnath</creatorcontrib><creatorcontrib>Vangal, Sriram</creatorcontrib><creatorcontrib>Perez Esparza, Brando</creatorcontrib><creatorcontrib>Cuellar, L.</creatorcontrib><creatorcontrib>Woodman, M.</creatorcontrib><creatorcontrib>Iyer, Bala</creatorcontrib><creatorcontrib>Maiyuran, Subramaniam</creatorcontrib><creatorcontrib>Chinya, G.</creatorcontrib><creatorcontrib>Zou, Xiang</creatorcontrib><creatorcontrib>Liao, Yuyun</creatorcontrib><creatorcontrib>Ravichandran, Krishnan</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Khellah, Muhammad M.</creatorcontrib><creatorcontrib>Tschanz, James W.</creatorcontrib><creatorcontrib>De, Vivek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meinerzhagen, Pascal A.</au><au>Tokunaga, Carlos</au><au>Malavasi, Andres</au><au>Vaidya, Vaibhav</au><au>Mendon, Ashwin</au><au>Mathaikutty, D.</au><au>Kulkarni, Jaydeep</au><au>Augustine, Charles</au><au>Cho, Minki</au><au>Kim, Stephen T.</au><au>Matthew, George E.</au><au>Jain, Rinkle</au><au>Ryan, Joseph</au><au>Peng, Chung-Ching</au><au>Paul, Somnath</au><au>Vangal, Sriram</au><au>Perez Esparza, Brando</au><au>Cuellar, L.</au><au>Woodman, M.</au><au>Iyer, Bala</au><au>Maiyuran, Subramaniam</au><au>Chinya, G.</au><au>Zou, Xiang</au><au>Liao, Yuyun</au><au>Ravichandran, Krishnan</au><au>Wang, H.</au><au>Khellah, Muhammad M.</au><au>Tschanz, James W.</au><au>De, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and } Optimization</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-01</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Graphics workloads make highly dynamic use of resources such as execution units (EUs), and thus can benefit from fast, fine-grain dynamic voltage and frequency scaling (DVFS) and retentive sleep. This paper presents a 14-nm graphics processing unit (GPU) prototype with modified EUs which include an integrated voltage regulator (IVR). The IVR enables energy-efficient EU turbo operation, data retention, and <inline-formula> <tex-math notation="LaTeX">V_{\text {MIN}} </tex-math></inline-formula> optimization per EU. Silicon measurements show that IVR-enabled EU turbo operation offers up to 32% (average 29%) energy reduction at constant performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2018.2875097</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5207-1079</orcidid><orcidid>https://orcid.org/0000-0003-3745-122X</orcidid><orcidid>https://orcid.org/0000-0002-5444-5772</orcidid><orcidid>https://orcid.org/0000-0002-0258-6776</orcidid><orcidid>https://orcid.org/0000-0003-0317-4332</orcidid><orcidid>https://orcid.org/0000-0003-2271-4314</orcidid><orcidid>https://orcid.org/0000-0001-9908-669X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2019-01, Vol.54 (1), p.144-157 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_2169457610 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V MIN optimization Clocks CMOS Dynamic scheduling Energy-efficient graphics processing unit (GPU) fine-grain dynamic voltage and frequency scaling (DVFS) Graphics boards Graphics processing units integrated voltage regulators (IVRs) Media Microprocessors Optimization Prototypes retentive sleep Sleep Voltage control Voltage regulators |
title | An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and } Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Efficient%20Graphics%20Processor%20in%2014-nm%20Tri-Gate%20CMOS%20Featuring%20Integrated%20Voltage%20Regulators%20for%20Fine-Grain%20DVFS,%20Retentive%20Sleep,%20and%20%7D%20Optimization&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Meinerzhagen,%20Pascal%20A.&rft.date=2019-01&rft.volume=54&rft.issue=1&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2018.2875097&rft_dat=%3Cproquest_RIE%3E2169457610%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169457610&rft_id=info:pmid/&rft_ieee_id=8527541&rfr_iscdi=true |