MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices

Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2018-12, Vol.5 (6), p.5132-5140
Hauptverfasser: Cionca, Victor, McGibney, Alan, Rea, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5140
container_issue 6
container_start_page 5132
container_title IEEE internet of things journal
container_volume 5
creator Cionca, Victor
McGibney, Alan
Rea, Susan
description Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.
doi_str_mv 10.1109/JIOT.2018.2866615
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2169436838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8443991</ieee_id><sourcerecordid>2169436838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHgT8LozJ2nTxLtR9yWTXTjxMqRNOju6dibtYP_elk3xKofwvOfjQegeyBiAyKfX5XozpgTEmArOOURXaEAZjYOQc3r9r75FI-93hJAuFoHkA_T5NinLafKMZ9o3WFcGrw9Nsdclfs--rGnLotriOsfTyrrtCSd15dt9R9QVzmv3-73Q7mh907Mv9lhk1t-hm1yX3o4u7xB9zKabZBGs1vNlMlkFGZWsCVKaahOHlmltqOHAdBQzSg1Iq1lMiGC5BCJi0LkBE4lQcBqzOKUaaEozy4bo8dz34OrvtttB7erWVd1IRYHLkHHBREfBmcpc7b2zuTq47kh3UkBUr1D1ClWvUF0UdpmHc6aw1v7xIgyZlMB-AFxna5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169436838</pqid></control><display><type>article</type><title>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Cionca, Victor ; McGibney, Alan ; Rea, Susan</creator><creatorcontrib>Cionca, Victor ; McGibney, Alan ; Rea, Susan</creatorcontrib><description>Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2866615</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Blackouts ; Complexity ; Computer simulation ; Energy consumption ; Energy consumption scheduling ; Energy harvesting ; energy neutral operation ; Energy states ; Hardware ; Heuristic algorithms ; Internet of Things ; Irradiance ; Optimization ; Outages ; Power consumption ; Prediction algorithms ; Scheduling ; State of the art ; Time complexity ; Tradeoffs</subject><ispartof>IEEE internet of things journal, 2018-12, Vol.5 (6), p.5132-5140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</citedby><cites>FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</cites><orcidid>0000-0002-6064-8103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8443991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8443991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cionca, Victor</creatorcontrib><creatorcontrib>McGibney, Alan</creatorcontrib><creatorcontrib>Rea, Susan</creatorcontrib><title>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Blackouts</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Energy consumption</subject><subject>Energy consumption scheduling</subject><subject>Energy harvesting</subject><subject>energy neutral operation</subject><subject>Energy states</subject><subject>Hardware</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>Irradiance</subject><subject>Optimization</subject><subject>Outages</subject><subject>Power consumption</subject><subject>Prediction algorithms</subject><subject>Scheduling</subject><subject>State of the art</subject><subject>Time complexity</subject><subject>Tradeoffs</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHgT8LozJ2nTxLtR9yWTXTjxMqRNOju6dibtYP_elk3xKofwvOfjQegeyBiAyKfX5XozpgTEmArOOURXaEAZjYOQc3r9r75FI-93hJAuFoHkA_T5NinLafKMZ9o3WFcGrw9Nsdclfs--rGnLotriOsfTyrrtCSd15dt9R9QVzmv3-73Q7mh907Mv9lhk1t-hm1yX3o4u7xB9zKabZBGs1vNlMlkFGZWsCVKaahOHlmltqOHAdBQzSg1Iq1lMiGC5BCJi0LkBE4lQcBqzOKUaaEozy4bo8dz34OrvtttB7erWVd1IRYHLkHHBREfBmcpc7b2zuTq47kh3UkBUr1D1ClWvUF0UdpmHc6aw1v7xIgyZlMB-AFxna5k</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Cionca, Victor</creator><creator>McGibney, Alan</creator><creator>Rea, Susan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6064-8103</orcidid></search><sort><creationdate>20181201</creationdate><title>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</title><author>Cionca, Victor ; McGibney, Alan ; Rea, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Blackouts</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Energy consumption</topic><topic>Energy consumption scheduling</topic><topic>Energy harvesting</topic><topic>energy neutral operation</topic><topic>Energy states</topic><topic>Hardware</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>Irradiance</topic><topic>Optimization</topic><topic>Outages</topic><topic>Power consumption</topic><topic>Prediction algorithms</topic><topic>Scheduling</topic><topic>State of the art</topic><topic>Time complexity</topic><topic>Tradeoffs</topic><toplevel>online_resources</toplevel><creatorcontrib>Cionca, Victor</creatorcontrib><creatorcontrib>McGibney, Alan</creatorcontrib><creatorcontrib>Rea, Susan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cionca, Victor</au><au>McGibney, Alan</au><au>Rea, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>5</volume><issue>6</issue><spage>5132</spage><epage>5140</epage><pages>5132-5140</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2866615</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6064-8103</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2018-12, Vol.5 (6), p.5132-5140
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2169436838
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
Blackouts
Complexity
Computer simulation
Energy consumption
Energy consumption scheduling
Energy harvesting
energy neutral operation
Energy states
Hardware
Heuristic algorithms
Internet of Things
Irradiance
Optimization
Outages
Power consumption
Prediction algorithms
Scheduling
State of the art
Time complexity
Tradeoffs
title MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAllEC:%20Fast%20and%20Optimal%20Scheduling%20of%20Energy%20Consumption%20for%20Energy%20Harvesting%20Devices&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cionca,%20Victor&rft.date=2018-12-01&rft.volume=5&rft.issue=6&rft.spage=5132&rft.epage=5140&rft.pages=5132-5140&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2866615&rft_dat=%3Cproquest_RIE%3E2169436838%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169436838&rft_id=info:pmid/&rft_ieee_id=8443991&rfr_iscdi=true