MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices
Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computat...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2018-12, Vol.5 (6), p.5132-5140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5140 |
---|---|
container_issue | 6 |
container_start_page | 5132 |
container_title | IEEE internet of things journal |
container_volume | 5 |
creator | Cionca, Victor McGibney, Alan Rea, Susan |
description | Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days. |
doi_str_mv | 10.1109/JIOT.2018.2866615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2169436838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8443991</ieee_id><sourcerecordid>2169436838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHgT8LozJ2nTxLtR9yWTXTjxMqRNOju6dibtYP_elk3xKofwvOfjQegeyBiAyKfX5XozpgTEmArOOURXaEAZjYOQc3r9r75FI-93hJAuFoHkA_T5NinLafKMZ9o3WFcGrw9Nsdclfs--rGnLotriOsfTyrrtCSd15dt9R9QVzmv3-73Q7mh907Mv9lhk1t-hm1yX3o4u7xB9zKabZBGs1vNlMlkFGZWsCVKaahOHlmltqOHAdBQzSg1Iq1lMiGC5BCJi0LkBE4lQcBqzOKUaaEozy4bo8dz34OrvtttB7erWVd1IRYHLkHHBREfBmcpc7b2zuTq47kh3UkBUr1D1ClWvUF0UdpmHc6aw1v7xIgyZlMB-AFxna5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169436838</pqid></control><display><type>article</type><title>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Cionca, Victor ; McGibney, Alan ; Rea, Susan</creator><creatorcontrib>Cionca, Victor ; McGibney, Alan ; Rea, Susan</creatorcontrib><description>Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2866615</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Blackouts ; Complexity ; Computer simulation ; Energy consumption ; Energy consumption scheduling ; Energy harvesting ; energy neutral operation ; Energy states ; Hardware ; Heuristic algorithms ; Internet of Things ; Irradiance ; Optimization ; Outages ; Power consumption ; Prediction algorithms ; Scheduling ; State of the art ; Time complexity ; Tradeoffs</subject><ispartof>IEEE internet of things journal, 2018-12, Vol.5 (6), p.5132-5140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</citedby><cites>FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</cites><orcidid>0000-0002-6064-8103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8443991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8443991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cionca, Victor</creatorcontrib><creatorcontrib>McGibney, Alan</creatorcontrib><creatorcontrib>Rea, Susan</creatorcontrib><title>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Blackouts</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Energy consumption</subject><subject>Energy consumption scheduling</subject><subject>Energy harvesting</subject><subject>energy neutral operation</subject><subject>Energy states</subject><subject>Hardware</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>Irradiance</subject><subject>Optimization</subject><subject>Outages</subject><subject>Power consumption</subject><subject>Prediction algorithms</subject><subject>Scheduling</subject><subject>State of the art</subject><subject>Time complexity</subject><subject>Tradeoffs</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHgT8LozJ2nTxLtR9yWTXTjxMqRNOju6dibtYP_elk3xKofwvOfjQegeyBiAyKfX5XozpgTEmArOOURXaEAZjYOQc3r9r75FI-93hJAuFoHkA_T5NinLafKMZ9o3WFcGrw9Nsdclfs--rGnLotriOsfTyrrtCSd15dt9R9QVzmv3-73Q7mh907Mv9lhk1t-hm1yX3o4u7xB9zKabZBGs1vNlMlkFGZWsCVKaahOHlmltqOHAdBQzSg1Iq1lMiGC5BCJi0LkBE4lQcBqzOKUaaEozy4bo8dz34OrvtttB7erWVd1IRYHLkHHBREfBmcpc7b2zuTq47kh3UkBUr1D1ClWvUF0UdpmHc6aw1v7xIgyZlMB-AFxna5k</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Cionca, Victor</creator><creator>McGibney, Alan</creator><creator>Rea, Susan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6064-8103</orcidid></search><sort><creationdate>20181201</creationdate><title>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</title><author>Cionca, Victor ; McGibney, Alan ; Rea, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b2bad74e3aad2d613a57322d19ea370083f910871afd1d584862737b2a12b2ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Blackouts</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Energy consumption</topic><topic>Energy consumption scheduling</topic><topic>Energy harvesting</topic><topic>energy neutral operation</topic><topic>Energy states</topic><topic>Hardware</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>Irradiance</topic><topic>Optimization</topic><topic>Outages</topic><topic>Power consumption</topic><topic>Prediction algorithms</topic><topic>Scheduling</topic><topic>State of the art</topic><topic>Time complexity</topic><topic>Tradeoffs</topic><toplevel>online_resources</toplevel><creatorcontrib>Cionca, Victor</creatorcontrib><creatorcontrib>McGibney, Alan</creatorcontrib><creatorcontrib>Rea, Susan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cionca, Victor</au><au>McGibney, Alan</au><au>Rea, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>5</volume><issue>6</issue><spage>5132</spage><epage>5140</epage><pages>5132-5140</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Energy consumption scheduling algorithms allow energy harvesting Internet of Things (IoT) devices to maximize the amount of harvested energy that they consume, while maintaining uninterrupted, indefinite, operation. The existing works in the area show a tradeoff between solution quality and computational complexity. At one end fast but suboptimal algorithms can lead to energy waste and power outages. At the other, optimal algorithms are computationally prohibitive for the constrained hardware of the IoT. This paper argues that the tradeoff can be avoided, and presents the MAllEC energy consumption scheduler that maximizes the allowed energy consumption while minimizing energy waste and power outages, with linear time complexity. MAllEC is compared against the state of the art through simulations using long term (14 years) traces of solar irradiance, and shown to consistently achieve the minimum energy waste and power outage. The linear time complexity of MAllEC is measured on constrained IoT hardware (8-bit Tmote Sky) to be low enough so that MAllEC can be executed unintrusively. This paper provides proof of MAllEC's optimality and shows that, in an application with dynamic, adjustable packet rate, MAllEC can maintain indefinite, uninterruptible, operation at an average rate of almost 100 packets per minute, where a 3-Ah battery powered device, at the same rate, would deplete after less than 200 days.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2866615</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6064-8103</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2018-12, Vol.5 (6), p.5132-5140 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2169436838 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Batteries Blackouts Complexity Computer simulation Energy consumption Energy consumption scheduling Energy harvesting energy neutral operation Energy states Hardware Heuristic algorithms Internet of Things Irradiance Optimization Outages Power consumption Prediction algorithms Scheduling State of the art Time complexity Tradeoffs |
title | MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAllEC:%20Fast%20and%20Optimal%20Scheduling%20of%20Energy%20Consumption%20for%20Energy%20Harvesting%20Devices&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cionca,%20Victor&rft.date=2018-12-01&rft.volume=5&rft.issue=6&rft.spage=5132&rft.epage=5140&rft.pages=5132-5140&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2866615&rft_dat=%3Cproquest_RIE%3E2169436838%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169436838&rft_id=info:pmid/&rft_ieee_id=8443991&rfr_iscdi=true |