Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics

Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-03, Vol.231 (3), p.1801-1809
1. Verfasser: Freistühler, Heinrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1809
container_issue 3
container_start_page 1801
container_title Archive for rational mechanics and analysis
container_volume 231
creator Freistühler, Heinrich
description Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.
doi_str_mv 10.1007/s00205-018-1310-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169320260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169320260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-29f0bcc8c6b8b5793be2cf9f8fc5bce99914bbd3a7d9fd359c3975808b7cda963</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdHeTo6y2FgqC6NWQZBNJ2Y-abIX-e1NW8FQYGAbe5x14ELqlcE8BqocEwKAgQAWhnAKRZ2hGF5wRKCt-jmYAwIksWHWJrlLaHk_Gyxn6rFudUrC6xeveDt0uunya1uFluw8Nfjr0ugs2YZ0Hb0IXRjx4_OZaPYafkMZgcX0au0YXXrfJ3fztOfpYPr_XL2TzulrXjxtiWSlGwqQHY62wpRGmqCQ3jlkvvfC2MNZJKenCmIbrqpG-4YW0XFaFAGEq22hZ8jm6m3p3cfjeuzSq7bCPfX6pGC0lZ8BKyCk6pWwcUorOq10MnY4HRUEdNapJo8oa1VGjkplhE5Nytv9y8b_5NPQLu5N2Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169320260</pqid></control><display><type>article</type><title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Freistühler, Heinrich</creator><creatorcontrib>Freistühler, Heinrich</creatorcontrib><description>Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-018-1310-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Compressible fluids ; Conservation laws ; Euler-Lagrange equation ; Flow control ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Hyperbolic systems ; Incompressible flow ; Incompressible fluids ; Mathematical analysis ; Mathematical and Computational Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Relativism ; Relativistic effects ; Relativity ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2019-03, Vol.231 (3), p.1801-1809</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-29f0bcc8c6b8b5793be2cf9f8fc5bce99914bbd3a7d9fd359c3975808b7cda963</cites><orcidid>0000-0002-0741-886X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-018-1310-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-018-1310-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Freistühler, Heinrich</creatorcontrib><title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Compressible fluids</subject><subject>Conservation laws</subject><subject>Euler-Lagrange equation</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Hyperbolic systems</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdHeTo6y2FgqC6NWQZBNJ2Y-abIX-e1NW8FQYGAbe5x14ELqlcE8BqocEwKAgQAWhnAKRZ2hGF5wRKCt-jmYAwIksWHWJrlLaHk_Gyxn6rFudUrC6xeveDt0uunya1uFluw8Nfjr0ugs2YZ0Hb0IXRjx4_OZaPYafkMZgcX0au0YXXrfJ3fztOfpYPr_XL2TzulrXjxtiWSlGwqQHY62wpRGmqCQ3jlkvvfC2MNZJKenCmIbrqpG-4YW0XFaFAGEq22hZ8jm6m3p3cfjeuzSq7bCPfX6pGC0lZ8BKyCk6pWwcUorOq10MnY4HRUEdNapJo8oa1VGjkplhE5Nytv9y8b_5NPQLu5N2Lw</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Freistühler, Heinrich</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0741-886X</orcidid></search><sort><creationdate>20190307</creationdate><title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</title><author>Freistühler, Heinrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-29f0bcc8c6b8b5793be2cf9f8fc5bce99914bbd3a7d9fd359c3975808b7cda963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Compressible fluids</topic><topic>Conservation laws</topic><topic>Euler-Lagrange equation</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Hyperbolic systems</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freistühler, Heinrich</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freistühler, Heinrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>231</volume><issue>3</issue><spage>1801</spage><epage>1809</epage><pages>1801-1809</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-018-1310-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0741-886X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2019-03, Vol.231 (3), p.1801-1809
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_2169320260
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Complex Systems
Compressible fluids
Conservation laws
Euler-Lagrange equation
Flow control
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Hyperbolic systems
Incompressible flow
Incompressible fluids
Mathematical analysis
Mathematical and Computational Physics
Partial differential equations
Physics
Physics and Astronomy
Relativism
Relativistic effects
Relativity
Theoretical
title Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Incompressible%20Fluid%20Dynamics%20as%20a%20Limit%20of%20Relativistic%20Compressible%20Fluid%20Dynamics&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Freist%C3%BChler,%20Heinrich&rft.date=2019-03-07&rft.volume=231&rft.issue=3&rft.spage=1801&rft.epage=1809&rft.pages=1801-1809&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-018-1310-9&rft_dat=%3Cproquest_cross%3E2169320260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169320260&rft_id=info:pmid/&rfr_iscdi=true