Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics
Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stif...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2019-03, Vol.231 (3), p.1801-1809 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1809 |
---|---|
container_issue | 3 |
container_start_page | 1801 |
container_title | Archive for rational mechanics and analysis |
container_volume | 231 |
creator | Freistühler, Heinrich |
description | Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as
c
→ ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity. |
doi_str_mv | 10.1007/s00205-018-1310-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169320260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169320260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-29f0bcc8c6b8b5793be2cf9f8fc5bce99914bbd3a7d9fd359c3975808b7cda963</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdHeTo6y2FgqC6NWQZBNJ2Y-abIX-e1NW8FQYGAbe5x14ELqlcE8BqocEwKAgQAWhnAKRZ2hGF5wRKCt-jmYAwIksWHWJrlLaHk_Gyxn6rFudUrC6xeveDt0uunya1uFluw8Nfjr0ugs2YZ0Hb0IXRjx4_OZaPYafkMZgcX0au0YXXrfJ3fztOfpYPr_XL2TzulrXjxtiWSlGwqQHY62wpRGmqCQ3jlkvvfC2MNZJKenCmIbrqpG-4YW0XFaFAGEq22hZ8jm6m3p3cfjeuzSq7bCPfX6pGC0lZ8BKyCk6pWwcUorOq10MnY4HRUEdNapJo8oa1VGjkplhE5Nytv9y8b_5NPQLu5N2Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169320260</pqid></control><display><type>article</type><title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Freistühler, Heinrich</creator><creatorcontrib>Freistühler, Heinrich</creatorcontrib><description>Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as
c
→ ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-018-1310-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Compressible fluids ; Conservation laws ; Euler-Lagrange equation ; Flow control ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Hyperbolic systems ; Incompressible flow ; Incompressible fluids ; Mathematical analysis ; Mathematical and Computational Physics ; Partial differential equations ; Physics ; Physics and Astronomy ; Relativism ; Relativistic effects ; Relativity ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2019-03, Vol.231 (3), p.1801-1809</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-29f0bcc8c6b8b5793be2cf9f8fc5bce99914bbd3a7d9fd359c3975808b7cda963</cites><orcidid>0000-0002-0741-886X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-018-1310-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-018-1310-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Freistühler, Heinrich</creatorcontrib><title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as
c
→ ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Compressible fluids</subject><subject>Conservation laws</subject><subject>Euler-Lagrange equation</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Hyperbolic systems</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSdHeTo6y2FgqC6NWQZBNJ2Y-abIX-e1NW8FQYGAbe5x14ELqlcE8BqocEwKAgQAWhnAKRZ2hGF5wRKCt-jmYAwIksWHWJrlLaHk_Gyxn6rFudUrC6xeveDt0uunya1uFluw8Nfjr0ugs2YZ0Hb0IXRjx4_OZaPYafkMZgcX0au0YXXrfJ3fztOfpYPr_XL2TzulrXjxtiWSlGwqQHY62wpRGmqCQ3jlkvvfC2MNZJKenCmIbrqpG-4YW0XFaFAGEq22hZ8jm6m3p3cfjeuzSq7bCPfX6pGC0lZ8BKyCk6pWwcUorOq10MnY4HRUEdNapJo8oa1VGjkplhE5Nytv9y8b_5NPQLu5N2Lw</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Freistühler, Heinrich</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0741-886X</orcidid></search><sort><creationdate>20190307</creationdate><title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</title><author>Freistühler, Heinrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-29f0bcc8c6b8b5793be2cf9f8fc5bce99914bbd3a7d9fd359c3975808b7cda963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Compressible fluids</topic><topic>Conservation laws</topic><topic>Euler-Lagrange equation</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Hyperbolic systems</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freistühler, Heinrich</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freistühler, Heinrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>231</volume><issue>3</issue><spage>1801</spage><epage>1809</epage><pages>1801-1809</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as
c
→ ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-018-1310-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0741-886X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2019-03, Vol.231 (3), p.1801-1809 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_2169320260 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Mechanics Complex Systems Compressible fluids Conservation laws Euler-Lagrange equation Flow control Fluid dynamics Fluid flow Fluid- and Aerodynamics Hyperbolic systems Incompressible flow Incompressible fluids Mathematical analysis Mathematical and Computational Physics Partial differential equations Physics Physics and Astronomy Relativism Relativistic effects Relativity Theoretical |
title | Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Incompressible%20Fluid%20Dynamics%20as%20a%20Limit%20of%20Relativistic%20Compressible%20Fluid%20Dynamics&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Freist%C3%BChler,%20Heinrich&rft.date=2019-03-07&rft.volume=231&rft.issue=3&rft.spage=1801&rft.epage=1809&rft.pages=1801-1809&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-018-1310-9&rft_dat=%3Cproquest_cross%3E2169320260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169320260&rft_id=info:pmid/&rfr_iscdi=true |