Controlled Massive Encapsulation via Tandem Step Emulsification in Glass
Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulatio...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-01, Vol.29 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 29 |
creator | Ofner, Alessandro Mattich, Iacopo Hagander, Michael Dutto, Alessandro Seybold, Hansjörg Rühs, Patrick A. Studart, André R. |
description | Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics.
Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure. |
doi_str_mv | 10.1002/adfm.201806821 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169197940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169197940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPrTPZNJs9ltoPocWDFbyFNM1CSvbDzW6l_96UlXr0lIE8z8zLS8gjwhgB2LPe58WYAUoQkuEVGaBAMUqAyevLjJ-35C6EAwCmacIHZDWryrapvLd7utEhuKOl89LoOnRet64q6dFputXl3hb0vbU1nRedDy53pv92JV36KN6Tm1z7YB9-3yH5WMy3s9Vo_bZ8nU3XI8NjthhBpiiSHd8ZwzXE4AhyYpBLzZmELLWJQcYkR50ZsWORN9IIgZBqNmE8GZKnfm_dVF-dDa06VF1TxpOKocgwSzMOkRr3lGmqEBqbq7pxhW5OCkGd21LnttSlrShkvfDtvD39Q6vpy2Lz5_4AD2VsCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169197940</pqid></control><display><type>article</type><title>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ofner, Alessandro ; Mattich, Iacopo ; Hagander, Michael ; Dutto, Alessandro ; Seybold, Hansjörg ; Rühs, Patrick A. ; Studart, André R.</creator><creatorcontrib>Ofner, Alessandro ; Mattich, Iacopo ; Hagander, Michael ; Dutto, Alessandro ; Seybold, Hansjörg ; Rühs, Patrick A. ; Studart, André R.</creatorcontrib><description>Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics.
Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201806821</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Double emulsions ; Emulsification ; Emulsions ; Encapsulation ; Flow velocity ; Glass ; high‐throughput ; Materials science ; Mathematical morphology ; Microencapsulation ; Microfluidics ; monodisperse ; Organic chemistry ; step emulsification</subject><ispartof>Advanced functional materials, 2019-01, Vol.29 (4), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</citedby><cites>FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</cites><orcidid>0000-0003-1918-8253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201806821$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201806821$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ofner, Alessandro</creatorcontrib><creatorcontrib>Mattich, Iacopo</creatorcontrib><creatorcontrib>Hagander, Michael</creatorcontrib><creatorcontrib>Dutto, Alessandro</creatorcontrib><creatorcontrib>Seybold, Hansjörg</creatorcontrib><creatorcontrib>Rühs, Patrick A.</creatorcontrib><creatorcontrib>Studart, André R.</creatorcontrib><title>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</title><title>Advanced functional materials</title><description>Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics.
Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.</description><subject>Double emulsions</subject><subject>Emulsification</subject><subject>Emulsions</subject><subject>Encapsulation</subject><subject>Flow velocity</subject><subject>Glass</subject><subject>high‐throughput</subject><subject>Materials science</subject><subject>Mathematical morphology</subject><subject>Microencapsulation</subject><subject>Microfluidics</subject><subject>monodisperse</subject><subject>Organic chemistry</subject><subject>step emulsification</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPrTPZNJs9ltoPocWDFbyFNM1CSvbDzW6l_96UlXr0lIE8z8zLS8gjwhgB2LPe58WYAUoQkuEVGaBAMUqAyevLjJ-35C6EAwCmacIHZDWryrapvLd7utEhuKOl89LoOnRet64q6dFputXl3hb0vbU1nRedDy53pv92JV36KN6Tm1z7YB9-3yH5WMy3s9Vo_bZ8nU3XI8NjthhBpiiSHd8ZwzXE4AhyYpBLzZmELLWJQcYkR50ZsWORN9IIgZBqNmE8GZKnfm_dVF-dDa06VF1TxpOKocgwSzMOkRr3lGmqEBqbq7pxhW5OCkGd21LnttSlrShkvfDtvD39Q6vpy2Lz5_4AD2VsCA</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Ofner, Alessandro</creator><creator>Mattich, Iacopo</creator><creator>Hagander, Michael</creator><creator>Dutto, Alessandro</creator><creator>Seybold, Hansjörg</creator><creator>Rühs, Patrick A.</creator><creator>Studart, André R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1918-8253</orcidid></search><sort><creationdate>20190124</creationdate><title>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</title><author>Ofner, Alessandro ; Mattich, Iacopo ; Hagander, Michael ; Dutto, Alessandro ; Seybold, Hansjörg ; Rühs, Patrick A. ; Studart, André R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Double emulsions</topic><topic>Emulsification</topic><topic>Emulsions</topic><topic>Encapsulation</topic><topic>Flow velocity</topic><topic>Glass</topic><topic>high‐throughput</topic><topic>Materials science</topic><topic>Mathematical morphology</topic><topic>Microencapsulation</topic><topic>Microfluidics</topic><topic>monodisperse</topic><topic>Organic chemistry</topic><topic>step emulsification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ofner, Alessandro</creatorcontrib><creatorcontrib>Mattich, Iacopo</creatorcontrib><creatorcontrib>Hagander, Michael</creatorcontrib><creatorcontrib>Dutto, Alessandro</creatorcontrib><creatorcontrib>Seybold, Hansjörg</creatorcontrib><creatorcontrib>Rühs, Patrick A.</creatorcontrib><creatorcontrib>Studart, André R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ofner, Alessandro</au><au>Mattich, Iacopo</au><au>Hagander, Michael</au><au>Dutto, Alessandro</au><au>Seybold, Hansjörg</au><au>Rühs, Patrick A.</au><au>Studart, André R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</atitle><jtitle>Advanced functional materials</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics.
Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201806821</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1918-8253</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2019-01, Vol.29 (4), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2169197940 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Double emulsions Emulsification Emulsions Encapsulation Flow velocity Glass high‐throughput Materials science Mathematical morphology Microencapsulation Microfluidics monodisperse Organic chemistry step emulsification |
title | Controlled Massive Encapsulation via Tandem Step Emulsification in Glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Massive%20Encapsulation%20via%20Tandem%20Step%20Emulsification%20in%20Glass&rft.jtitle=Advanced%20functional%20materials&rft.au=Ofner,%20Alessandro&rft.date=2019-01-24&rft.volume=29&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201806821&rft_dat=%3Cproquest_cross%3E2169197940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169197940&rft_id=info:pmid/&rfr_iscdi=true |