Controlled Massive Encapsulation via Tandem Step Emulsification in Glass

Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-01, Vol.29 (4), p.n/a
Hauptverfasser: Ofner, Alessandro, Mattich, Iacopo, Hagander, Michael, Dutto, Alessandro, Seybold, Hansjörg, Rühs, Patrick A., Studart, André R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced functional materials
container_volume 29
creator Ofner, Alessandro
Mattich, Iacopo
Hagander, Michael
Dutto, Alessandro
Seybold, Hansjörg
Rühs, Patrick A.
Studart, André R.
description Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics. Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.
doi_str_mv 10.1002/adfm.201806821
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169197940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169197940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPrTPZNJs9ltoPocWDFbyFNM1CSvbDzW6l_96UlXr0lIE8z8zLS8gjwhgB2LPe58WYAUoQkuEVGaBAMUqAyevLjJ-35C6EAwCmacIHZDWryrapvLd7utEhuKOl89LoOnRet64q6dFputXl3hb0vbU1nRedDy53pv92JV36KN6Tm1z7YB9-3yH5WMy3s9Vo_bZ8nU3XI8NjthhBpiiSHd8ZwzXE4AhyYpBLzZmELLWJQcYkR50ZsWORN9IIgZBqNmE8GZKnfm_dVF-dDa06VF1TxpOKocgwSzMOkRr3lGmqEBqbq7pxhW5OCkGd21LnttSlrShkvfDtvD39Q6vpy2Lz5_4AD2VsCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169197940</pqid></control><display><type>article</type><title>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ofner, Alessandro ; Mattich, Iacopo ; Hagander, Michael ; Dutto, Alessandro ; Seybold, Hansjörg ; Rühs, Patrick A. ; Studart, André R.</creator><creatorcontrib>Ofner, Alessandro ; Mattich, Iacopo ; Hagander, Michael ; Dutto, Alessandro ; Seybold, Hansjörg ; Rühs, Patrick A. ; Studart, André R.</creatorcontrib><description>Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics. Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201806821</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Double emulsions ; Emulsification ; Emulsions ; Encapsulation ; Flow velocity ; Glass ; high‐throughput ; Materials science ; Mathematical morphology ; Microencapsulation ; Microfluidics ; monodisperse ; Organic chemistry ; step emulsification</subject><ispartof>Advanced functional materials, 2019-01, Vol.29 (4), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</citedby><cites>FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</cites><orcidid>0000-0003-1918-8253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201806821$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201806821$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ofner, Alessandro</creatorcontrib><creatorcontrib>Mattich, Iacopo</creatorcontrib><creatorcontrib>Hagander, Michael</creatorcontrib><creatorcontrib>Dutto, Alessandro</creatorcontrib><creatorcontrib>Seybold, Hansjörg</creatorcontrib><creatorcontrib>Rühs, Patrick A.</creatorcontrib><creatorcontrib>Studart, André R.</creatorcontrib><title>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</title><title>Advanced functional materials</title><description>Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics. Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.</description><subject>Double emulsions</subject><subject>Emulsification</subject><subject>Emulsions</subject><subject>Encapsulation</subject><subject>Flow velocity</subject><subject>Glass</subject><subject>high‐throughput</subject><subject>Materials science</subject><subject>Mathematical morphology</subject><subject>Microencapsulation</subject><subject>Microfluidics</subject><subject>monodisperse</subject><subject>Organic chemistry</subject><subject>step emulsification</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPrTPZNJs9ltoPocWDFbyFNM1CSvbDzW6l_96UlXr0lIE8z8zLS8gjwhgB2LPe58WYAUoQkuEVGaBAMUqAyevLjJ-35C6EAwCmacIHZDWryrapvLd7utEhuKOl89LoOnRet64q6dFputXl3hb0vbU1nRedDy53pv92JV36KN6Tm1z7YB9-3yH5WMy3s9Vo_bZ8nU3XI8NjthhBpiiSHd8ZwzXE4AhyYpBLzZmELLWJQcYkR50ZsWORN9IIgZBqNmE8GZKnfm_dVF-dDa06VF1TxpOKocgwSzMOkRr3lGmqEBqbq7pxhW5OCkGd21LnttSlrShkvfDtvD39Q6vpy2Lz5_4AD2VsCA</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Ofner, Alessandro</creator><creator>Mattich, Iacopo</creator><creator>Hagander, Michael</creator><creator>Dutto, Alessandro</creator><creator>Seybold, Hansjörg</creator><creator>Rühs, Patrick A.</creator><creator>Studart, André R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1918-8253</orcidid></search><sort><creationdate>20190124</creationdate><title>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</title><author>Ofner, Alessandro ; Mattich, Iacopo ; Hagander, Michael ; Dutto, Alessandro ; Seybold, Hansjörg ; Rühs, Patrick A. ; Studart, André R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-3087163b4bcc4a01001085c148a428097e3c122841a9c6b2308c8c66107a25243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Double emulsions</topic><topic>Emulsification</topic><topic>Emulsions</topic><topic>Encapsulation</topic><topic>Flow velocity</topic><topic>Glass</topic><topic>high‐throughput</topic><topic>Materials science</topic><topic>Mathematical morphology</topic><topic>Microencapsulation</topic><topic>Microfluidics</topic><topic>monodisperse</topic><topic>Organic chemistry</topic><topic>step emulsification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ofner, Alessandro</creatorcontrib><creatorcontrib>Mattich, Iacopo</creatorcontrib><creatorcontrib>Hagander, Michael</creatorcontrib><creatorcontrib>Dutto, Alessandro</creatorcontrib><creatorcontrib>Seybold, Hansjörg</creatorcontrib><creatorcontrib>Rühs, Patrick A.</creatorcontrib><creatorcontrib>Studart, André R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ofner, Alessandro</au><au>Mattich, Iacopo</au><au>Hagander, Michael</au><au>Dutto, Alessandro</au><au>Seybold, Hansjörg</au><au>Rühs, Patrick A.</au><au>Studart, André R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Massive Encapsulation via Tandem Step Emulsification in Glass</atitle><jtitle>Advanced functional materials</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Controlled encapsulation is important in pharmaceutics, agriculture, food products, and in emerging materials applications. Microfluidics offers a compelling approach to create controlled emulsions and microcapsules for these applications, but upscaling of this technology for the robust encapsulation of chemically diverse active ingredients is not yet demonstrated. Here, it is shown that microfluidic step emulsification can be exploited in upscaled glass devices to robustly produce monodisperse double emulsions and functional microcapsules in tandem at high throughput rates. The effect of geometrical parameters of the devices and the operating flow rates on the morphology, dimensions, and structure of monodisperse double emulsions is investigated and quantified using simple quantitative models. Using such double emulsions as templates, mechanoresponsive microcapsules that can be embedded in a soft matrix to generate damage‐reporting polymer parts that change color in areas subjected to excessive mechanical loads are created. Thanks to the chemical versatility and mechanical robustness of glass, this platform should enable the high‐throughput encapsulation of a wide variety of chemicals while providing the exquisite control achievable through microfluidics. Tandem step emulsifiers produce monodisperse capsules with size‐controlled inner and outer phases at high through‐put rates. The double emulsions are tailored by the flow rate and the geometry of the microfluidic device. Combined with the chemical versatility of glass, these devices allow for the encapsulation of a wide variety of chemicals with exquisite control over the emulsion structure.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201806821</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1918-8253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-01, Vol.29 (4), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2169197940
source Wiley Online Library Journals Frontfile Complete
subjects Double emulsions
Emulsification
Emulsions
Encapsulation
Flow velocity
Glass
high‐throughput
Materials science
Mathematical morphology
Microencapsulation
Microfluidics
monodisperse
Organic chemistry
step emulsification
title Controlled Massive Encapsulation via Tandem Step Emulsification in Glass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Massive%20Encapsulation%20via%20Tandem%20Step%20Emulsification%20in%20Glass&rft.jtitle=Advanced%20functional%20materials&rft.au=Ofner,%20Alessandro&rft.date=2019-01-24&rft.volume=29&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201806821&rft_dat=%3Cproquest_cross%3E2169197940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169197940&rft_id=info:pmid/&rfr_iscdi=true