Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement

A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antonie van Leeuwenhoek 2019-07, Vol.112 (7), p.975-990
Hauptverfasser: Pattanakittivorakul, Sornsiri, Lertwattanasakul, Noppon, Yamada, Mamoru, Limtong, Savitree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 7
container_start_page 975
container_title Antonie van Leeuwenhoek
container_volume 112
creator Pattanakittivorakul, Sornsiri
Lertwattanasakul, Noppon
Yamada, Mamoru
Limtong, Savitree
description A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH 4 ) 2 SO 4 of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH 4 ) 2 SO 4 by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.
doi_str_mv 10.1007/s10482-019-01230-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169136438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169136438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkOp6K36B7qQgOtp8zGTSZYi9gOELqzrkMk9uROZSW6TjHD_Tn9po6PtRroIIec85zmQF6GPlHyihPSfMyWtZA2hqh7GSSPeoQ3tetYoodR7tCGE8EaQnp2gDzk_1KcSsj9GJ5wIITpONuj3HUxgi48BR4fLCGmOJU6QTCj4zlg7mhTng4WMLSR49NkbwC4mPPrdiAvM-8qWJQGGMpoQJ7xPcbusSldn8Rwnk3MVmLDFPtgEJvuwe4sfDjiXZHzAfq7lR5ghlDN05MyU4fzlPkX3X25-Xn9rbn98_X59ddvYtqWl6c2gJHMORGvsoJjpO8Mkp6p-hlAtqY2ODXZLZNdZ0gMIJ5l0g4QOZEcEP0WXq7du_rVALvohLinUlZpRoSgXLZeVYitlU8w5gdP75GeTDpoS_RSLXmPRNRb9HIt-Ul-8qJdhhu3fkdccKsBXINdW2EH6t_s_2j9d251O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169136438</pqid></control><display><type>article</type><title>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pattanakittivorakul, Sornsiri ; Lertwattanasakul, Noppon ; Yamada, Mamoru ; Limtong, Savitree</creator><creatorcontrib>Pattanakittivorakul, Sornsiri ; Lertwattanasakul, Noppon ; Yamada, Mamoru ; Limtong, Savitree</creatorcontrib><description>A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH 4 ) 2 SO 4 of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH 4 ) 2 SO 4 by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.</description><identifier>ISSN: 0003-6072</identifier><identifier>EISSN: 1572-9699</identifier><identifier>DOI: 10.1007/s10482-019-01230-6</identifier><identifier>PMID: 30666530</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetic acid ; Ammonium sulfate ; Baking yeast ; Biomedical and Life Sciences ; Cultivation ; Culture Media - chemistry ; Culture Media - metabolism ; Ethanol ; Ethanol - metabolism ; Fermentation ; Furfural ; High temperature ; Hot Temperature ; Hydroxymethylfurfural ; Industrial Microbiology ; Life Sciences ; Medical Microbiology ; Microbiology ; Molasses ; Molasses - analysis ; Molasses - microbiology ; Mutagenesis ; Mutants ; Original Paper ; pH effects ; Plant Sciences ; Productivity ; Response surface methodology ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Shaking ; Soil Science &amp; Conservation ; Sugar ; Temperature requirements ; Ultraviolet radiation ; Ultraviolet Rays ; Yeast ; Yeasts</subject><ispartof>Antonie van Leeuwenhoek, 2019-07, Vol.112 (7), p.975-990</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Antonie van Leeuwenhoek is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</citedby><cites>FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10482-019-01230-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10482-019-01230-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30666530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pattanakittivorakul, Sornsiri</creatorcontrib><creatorcontrib>Lertwattanasakul, Noppon</creatorcontrib><creatorcontrib>Yamada, Mamoru</creatorcontrib><creatorcontrib>Limtong, Savitree</creatorcontrib><title>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</title><title>Antonie van Leeuwenhoek</title><addtitle>Antonie van Leeuwenhoek</addtitle><addtitle>Antonie Van Leeuwenhoek</addtitle><description>A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH 4 ) 2 SO 4 of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH 4 ) 2 SO 4 by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.</description><subject>Acetic acid</subject><subject>Ammonium sulfate</subject><subject>Baking yeast</subject><subject>Biomedical and Life Sciences</subject><subject>Cultivation</subject><subject>Culture Media - chemistry</subject><subject>Culture Media - metabolism</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Furfural</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Hydroxymethylfurfural</subject><subject>Industrial Microbiology</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Molasses</subject><subject>Molasses - analysis</subject><subject>Molasses - microbiology</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Original Paper</subject><subject>pH effects</subject><subject>Plant Sciences</subject><subject>Productivity</subject><subject>Response surface methodology</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Shaking</subject><subject>Soil Science &amp; Conservation</subject><subject>Sugar</subject><subject>Temperature requirements</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0003-6072</issn><issn>1572-9699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LHTEUhkOp6K36B7qQgOtp8zGTSZYi9gOELqzrkMk9uROZSW6TjHD_Tn9po6PtRroIIec85zmQF6GPlHyihPSfMyWtZA2hqh7GSSPeoQ3tetYoodR7tCGE8EaQnp2gDzk_1KcSsj9GJ5wIITpONuj3HUxgi48BR4fLCGmOJU6QTCj4zlg7mhTng4WMLSR49NkbwC4mPPrdiAvM-8qWJQGGMpoQJ7xPcbusSldn8Rwnk3MVmLDFPtgEJvuwe4sfDjiXZHzAfq7lR5ghlDN05MyU4fzlPkX3X25-Xn9rbn98_X59ddvYtqWl6c2gJHMORGvsoJjpO8Mkp6p-hlAtqY2ODXZLZNdZ0gMIJ5l0g4QOZEcEP0WXq7du_rVALvohLinUlZpRoSgXLZeVYitlU8w5gdP75GeTDpoS_RSLXmPRNRb9HIt-Ul-8qJdhhu3fkdccKsBXINdW2EH6t_s_2j9d251O</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Pattanakittivorakul, Sornsiri</creator><creator>Lertwattanasakul, Noppon</creator><creator>Yamada, Mamoru</creator><creator>Limtong, Savitree</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190701</creationdate><title>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</title><author>Pattanakittivorakul, Sornsiri ; Lertwattanasakul, Noppon ; Yamada, Mamoru ; Limtong, Savitree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic acid</topic><topic>Ammonium sulfate</topic><topic>Baking yeast</topic><topic>Biomedical and Life Sciences</topic><topic>Cultivation</topic><topic>Culture Media - chemistry</topic><topic>Culture Media - metabolism</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Furfural</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Hydroxymethylfurfural</topic><topic>Industrial Microbiology</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Molasses</topic><topic>Molasses - analysis</topic><topic>Molasses - microbiology</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Original Paper</topic><topic>pH effects</topic><topic>Plant Sciences</topic><topic>Productivity</topic><topic>Response surface methodology</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Shaking</topic><topic>Soil Science &amp; Conservation</topic><topic>Sugar</topic><topic>Temperature requirements</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattanakittivorakul, Sornsiri</creatorcontrib><creatorcontrib>Lertwattanasakul, Noppon</creatorcontrib><creatorcontrib>Yamada, Mamoru</creatorcontrib><creatorcontrib>Limtong, Savitree</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Antonie van Leeuwenhoek</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattanakittivorakul, Sornsiri</au><au>Lertwattanasakul, Noppon</au><au>Yamada, Mamoru</au><au>Limtong, Savitree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</atitle><jtitle>Antonie van Leeuwenhoek</jtitle><stitle>Antonie van Leeuwenhoek</stitle><addtitle>Antonie Van Leeuwenhoek</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>112</volume><issue>7</issue><spage>975</spage><epage>990</epage><pages>975-990</pages><issn>0003-6072</issn><eissn>1572-9699</eissn><abstract>A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH 4 ) 2 SO 4 of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH 4 ) 2 SO 4 by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30666530</pmid><doi>10.1007/s10482-019-01230-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6072
ispartof Antonie van Leeuwenhoek, 2019-07, Vol.112 (7), p.975-990
issn 0003-6072
1572-9699
language eng
recordid cdi_proquest_journals_2169136438
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acetic acid
Ammonium sulfate
Baking yeast
Biomedical and Life Sciences
Cultivation
Culture Media - chemistry
Culture Media - metabolism
Ethanol
Ethanol - metabolism
Fermentation
Furfural
High temperature
Hot Temperature
Hydroxymethylfurfural
Industrial Microbiology
Life Sciences
Medical Microbiology
Microbiology
Molasses
Molasses - analysis
Molasses - microbiology
Mutagenesis
Mutants
Original Paper
pH effects
Plant Sciences
Productivity
Response surface methodology
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Shaking
Soil Science & Conservation
Sugar
Temperature requirements
Ultraviolet radiation
Ultraviolet Rays
Yeast
Yeasts
title Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20thermotolerant%20Saccharomyces%20cerevisiae%20for%20high%20temperature%20ethanol%20production%20from%20molasses%20and%20increasing%20ethanol%20production%20by%20strain%20improvement&rft.jtitle=Antonie%20van%20Leeuwenhoek&rft.au=Pattanakittivorakul,%20Sornsiri&rft.date=2019-07-01&rft.volume=112&rft.issue=7&rft.spage=975&rft.epage=990&rft.pages=975-990&rft.issn=0003-6072&rft.eissn=1572-9699&rft_id=info:doi/10.1007/s10482-019-01230-6&rft_dat=%3Cproquest_cross%3E2169136438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169136438&rft_id=info:pmid/30666530&rfr_iscdi=true