Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement
A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevi...
Gespeichert in:
Veröffentlicht in: | Antonie van Leeuwenhoek 2019-07, Vol.112 (7), p.975-990 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 7 |
container_start_page | 975 |
container_title | Antonie van Leeuwenhoek |
container_volume | 112 |
creator | Pattanakittivorakul, Sornsiri Lertwattanasakul, Noppon Yamada, Mamoru Limtong, Savitree |
description | A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis.
Saccharomyces cerevisiae
DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH
4
)
2
SO
4
of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH
4
)
2
SO
4
by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type. |
doi_str_mv | 10.1007/s10482-019-01230-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169136438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169136438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkOp6K36B7qQgOtp8zGTSZYi9gOELqzrkMk9uROZSW6TjHD_Tn9po6PtRroIIec85zmQF6GPlHyihPSfMyWtZA2hqh7GSSPeoQ3tetYoodR7tCGE8EaQnp2gDzk_1KcSsj9GJ5wIITpONuj3HUxgi48BR4fLCGmOJU6QTCj4zlg7mhTng4WMLSR49NkbwC4mPPrdiAvM-8qWJQGGMpoQJ7xPcbusSldn8Rwnk3MVmLDFPtgEJvuwe4sfDjiXZHzAfq7lR5ghlDN05MyU4fzlPkX3X25-Xn9rbn98_X59ddvYtqWl6c2gJHMORGvsoJjpO8Mkp6p-hlAtqY2ODXZLZNdZ0gMIJ5l0g4QOZEcEP0WXq7du_rVALvohLinUlZpRoSgXLZeVYitlU8w5gdP75GeTDpoS_RSLXmPRNRb9HIt-Ul-8qJdhhu3fkdccKsBXINdW2EH6t_s_2j9d251O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169136438</pqid></control><display><type>article</type><title>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pattanakittivorakul, Sornsiri ; Lertwattanasakul, Noppon ; Yamada, Mamoru ; Limtong, Savitree</creator><creatorcontrib>Pattanakittivorakul, Sornsiri ; Lertwattanasakul, Noppon ; Yamada, Mamoru ; Limtong, Savitree</creatorcontrib><description>A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis.
Saccharomyces cerevisiae
DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH
4
)
2
SO
4
of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH
4
)
2
SO
4
by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.</description><identifier>ISSN: 0003-6072</identifier><identifier>EISSN: 1572-9699</identifier><identifier>DOI: 10.1007/s10482-019-01230-6</identifier><identifier>PMID: 30666530</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetic acid ; Ammonium sulfate ; Baking yeast ; Biomedical and Life Sciences ; Cultivation ; Culture Media - chemistry ; Culture Media - metabolism ; Ethanol ; Ethanol - metabolism ; Fermentation ; Furfural ; High temperature ; Hot Temperature ; Hydroxymethylfurfural ; Industrial Microbiology ; Life Sciences ; Medical Microbiology ; Microbiology ; Molasses ; Molasses - analysis ; Molasses - microbiology ; Mutagenesis ; Mutants ; Original Paper ; pH effects ; Plant Sciences ; Productivity ; Response surface methodology ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Shaking ; Soil Science & Conservation ; Sugar ; Temperature requirements ; Ultraviolet radiation ; Ultraviolet Rays ; Yeast ; Yeasts</subject><ispartof>Antonie van Leeuwenhoek, 2019-07, Vol.112 (7), p.975-990</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Antonie van Leeuwenhoek is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</citedby><cites>FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10482-019-01230-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10482-019-01230-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30666530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pattanakittivorakul, Sornsiri</creatorcontrib><creatorcontrib>Lertwattanasakul, Noppon</creatorcontrib><creatorcontrib>Yamada, Mamoru</creatorcontrib><creatorcontrib>Limtong, Savitree</creatorcontrib><title>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</title><title>Antonie van Leeuwenhoek</title><addtitle>Antonie van Leeuwenhoek</addtitle><addtitle>Antonie Van Leeuwenhoek</addtitle><description>A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis.
Saccharomyces cerevisiae
DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH
4
)
2
SO
4
of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH
4
)
2
SO
4
by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.</description><subject>Acetic acid</subject><subject>Ammonium sulfate</subject><subject>Baking yeast</subject><subject>Biomedical and Life Sciences</subject><subject>Cultivation</subject><subject>Culture Media - chemistry</subject><subject>Culture Media - metabolism</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Furfural</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Hydroxymethylfurfural</subject><subject>Industrial Microbiology</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Molasses</subject><subject>Molasses - analysis</subject><subject>Molasses - microbiology</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Original Paper</subject><subject>pH effects</subject><subject>Plant Sciences</subject><subject>Productivity</subject><subject>Response surface methodology</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Shaking</subject><subject>Soil Science & Conservation</subject><subject>Sugar</subject><subject>Temperature requirements</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0003-6072</issn><issn>1572-9699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LHTEUhkOp6K36B7qQgOtp8zGTSZYi9gOELqzrkMk9uROZSW6TjHD_Tn9po6PtRroIIec85zmQF6GPlHyihPSfMyWtZA2hqh7GSSPeoQ3tetYoodR7tCGE8EaQnp2gDzk_1KcSsj9GJ5wIITpONuj3HUxgi48BR4fLCGmOJU6QTCj4zlg7mhTng4WMLSR49NkbwC4mPPrdiAvM-8qWJQGGMpoQJ7xPcbusSldn8Rwnk3MVmLDFPtgEJvuwe4sfDjiXZHzAfq7lR5ghlDN05MyU4fzlPkX3X25-Xn9rbn98_X59ddvYtqWl6c2gJHMORGvsoJjpO8Mkp6p-hlAtqY2ODXZLZNdZ0gMIJ5l0g4QOZEcEP0WXq7du_rVALvohLinUlZpRoSgXLZeVYitlU8w5gdP75GeTDpoS_RSLXmPRNRb9HIt-Ul-8qJdhhu3fkdccKsBXINdW2EH6t_s_2j9d251O</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Pattanakittivorakul, Sornsiri</creator><creator>Lertwattanasakul, Noppon</creator><creator>Yamada, Mamoru</creator><creator>Limtong, Savitree</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190701</creationdate><title>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</title><author>Pattanakittivorakul, Sornsiri ; Lertwattanasakul, Noppon ; Yamada, Mamoru ; Limtong, Savitree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7ab982ffe64acb92a75a283199696940fe652bcd0855c07ee6f828fb8e5e85063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic acid</topic><topic>Ammonium sulfate</topic><topic>Baking yeast</topic><topic>Biomedical and Life Sciences</topic><topic>Cultivation</topic><topic>Culture Media - chemistry</topic><topic>Culture Media - metabolism</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Furfural</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Hydroxymethylfurfural</topic><topic>Industrial Microbiology</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Molasses</topic><topic>Molasses - analysis</topic><topic>Molasses - microbiology</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Original Paper</topic><topic>pH effects</topic><topic>Plant Sciences</topic><topic>Productivity</topic><topic>Response surface methodology</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Shaking</topic><topic>Soil Science & Conservation</topic><topic>Sugar</topic><topic>Temperature requirements</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattanakittivorakul, Sornsiri</creatorcontrib><creatorcontrib>Lertwattanasakul, Noppon</creatorcontrib><creatorcontrib>Yamada, Mamoru</creatorcontrib><creatorcontrib>Limtong, Savitree</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Antonie van Leeuwenhoek</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattanakittivorakul, Sornsiri</au><au>Lertwattanasakul, Noppon</au><au>Yamada, Mamoru</au><au>Limtong, Savitree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement</atitle><jtitle>Antonie van Leeuwenhoek</jtitle><stitle>Antonie van Leeuwenhoek</stitle><addtitle>Antonie Van Leeuwenhoek</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>112</volume><issue>7</issue><spage>975</spage><epage>990</epage><pages>975-990</pages><issn>0003-6072</issn><eissn>1572-9699</eissn><abstract>A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis.
Saccharomyces cerevisiae
DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 °C. Optimization of molasses broth composition was performed by the response surface method using Box–Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200 g/L and optimal (NH
4
)
2
SO
4
of 1 g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 °C ethanol, productivity and yield were 58.4 ± 0.24 g/L, 1.39 g/L/h and 0.29 g/g, respectively. Batch fermentation in a 5 L stirred-tank fermenter with 3 L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 °C and 300 rpm agitation resulted in 72.4 g/L ethanol, 1.21 g/L/h productivity and 0.36 g/g yield at 60 h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 ± 0.48–73.0 ± 0.54 g/L) in molasses broth containing 200 g/L TFS and 1 g/L (NH
4
)
2
SO
4
by shake flask fermentation at 37 °C than the wild type (59.8 ± 0.25 g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 ± 0.26 g/L) than the wild type (59.5 ± 0.02 g/L) at 40 °C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30666530</pmid><doi>10.1007/s10482-019-01230-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6072 |
ispartof | Antonie van Leeuwenhoek, 2019-07, Vol.112 (7), p.975-990 |
issn | 0003-6072 1572-9699 |
language | eng |
recordid | cdi_proquest_journals_2169136438 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acetic acid Ammonium sulfate Baking yeast Biomedical and Life Sciences Cultivation Culture Media - chemistry Culture Media - metabolism Ethanol Ethanol - metabolism Fermentation Furfural High temperature Hot Temperature Hydroxymethylfurfural Industrial Microbiology Life Sciences Medical Microbiology Microbiology Molasses Molasses - analysis Molasses - microbiology Mutagenesis Mutants Original Paper pH effects Plant Sciences Productivity Response surface methodology Saccharomyces cerevisiae Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Shaking Soil Science & Conservation Sugar Temperature requirements Ultraviolet radiation Ultraviolet Rays Yeast Yeasts |
title | Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20thermotolerant%20Saccharomyces%20cerevisiae%20for%20high%20temperature%20ethanol%20production%20from%20molasses%20and%20increasing%20ethanol%20production%20by%20strain%20improvement&rft.jtitle=Antonie%20van%20Leeuwenhoek&rft.au=Pattanakittivorakul,%20Sornsiri&rft.date=2019-07-01&rft.volume=112&rft.issue=7&rft.spage=975&rft.epage=990&rft.pages=975-990&rft.issn=0003-6072&rft.eissn=1572-9699&rft_id=info:doi/10.1007/s10482-019-01230-6&rft_dat=%3Cproquest_cross%3E2169136438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169136438&rft_id=info:pmid/30666530&rfr_iscdi=true |