Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy

In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2019-06, Vol.26 (3), p.923-944
Hauptverfasser: Liu, Zhun, Guan, Zhidong, Tan, Riming, Xu, Jifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 944
container_issue 3
container_start_page 923
container_title Applied composite materials
container_volume 26
creator Liu, Zhun
Guan, Zhidong
Tan, Riming
Xu, Jifeng
description In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress transformation, the effect of thermal residual stress was considered using constant thermal amplification factor. Meanwhile, macro-level interlaminar failure was defined with cohesive elements. Based on the simulated and experimental results, the sub-laminate scaled OHC laminates of the stacking sequence [45/0/−45/90] 4s were studied at different temperatures. The established multiscale model showed good precision in the strength and failure mode predictions. Transverse throughout damage at the hole section led to the final failure. As the temperature increased, the damage process began at a lower load level and the strength of the laminates decreased significantly. Stiffness reductions and small load drops were more likely to occur before final failure. The differences in the delamination size among all interfaces tended to be smaller. Besides, matrix failure lagged under shear loading conditions if the thermal residual stress was neglected in the multiscale analysis.
doi_str_mv 10.1007/s10443-019-9759-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2169128734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169128734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9482dc8fb6981f23df887b3e42eab517b3dbe82bf36c06230709329a4729a59e3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9H8aZvkcQ7nhMlEp_gW0jYdHW1Tc1th396MCT75cu-Be86B-0PomtFbRqm8A0aTRBDKNNEy1USdoAlLpSCJ0vIUTajmmjClP8_RBcCOUqpkJidoO-tss4casK_wuncdWfrG4blv--AA6u-oF68veGXburODA2wH_GFD7UfAG9f2LthhjFZ8b8GV2HfY4uexGWoobCx6G-LdbfeX6KyyDbir3z1F74uHzXxJVuvHp_lsRQqh-EB0onhZqCrPtGIVF2WllMyFS7izecqiLHOneF6JrKAZF1RSLbi2iYwj1U5M0c2xtw_-a3QwmJ0fQ_wRDGeZZlxJkUQXO7qK4AGCq0wf6taGvWHUHHiaI08TeZoDT6Nihh8zEL3d1oW_5v9DP54deDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169128734</pqid></control><display><type>article</type><title>Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Zhun ; Guan, Zhidong ; Tan, Riming ; Xu, Jifeng</creator><creatorcontrib>Liu, Zhun ; Guan, Zhidong ; Tan, Riming ; Xu, Jifeng</creatorcontrib><description>In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress transformation, the effect of thermal residual stress was considered using constant thermal amplification factor. Meanwhile, macro-level interlaminar failure was defined with cohesive elements. Based on the simulated and experimental results, the sub-laminate scaled OHC laminates of the stacking sequence [45/0/−45/90] 4s were studied at different temperatures. The established multiscale model showed good precision in the strength and failure mode predictions. Transverse throughout damage at the hole section led to the final failure. As the temperature increased, the damage process began at a lower load level and the strength of the laminates decreased significantly. Stiffness reductions and small load drops were more likely to occur before final failure. The differences in the delamination size among all interfaces tended to be smaller. Besides, matrix failure lagged under shear loading conditions if the thermal residual stress was neglected in the multiscale analysis.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-019-9759-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Carbon fiber reinforced plastics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Computer simulation ; Failure analysis ; Failure modes ; Industrial Chemistry/Chemical Engineering ; Laminates ; Materials Science ; Micromechanics ; Multiscale analysis ; Polymer Sciences ; Residual stress ; Stacking sequence (composite materials) ; Stiffness ; Thermal transformations</subject><ispartof>Applied composite materials, 2019-06, Vol.26 (3), p.923-944</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Applied Composite Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9482dc8fb6981f23df887b3e42eab517b3dbe82bf36c06230709329a4729a59e3</citedby><cites>FETCH-LOGICAL-c382t-9482dc8fb6981f23df887b3e42eab517b3dbe82bf36c06230709329a4729a59e3</cites><orcidid>0000-0001-8614-5398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10443-019-9759-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10443-019-9759-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Zhun</creatorcontrib><creatorcontrib>Guan, Zhidong</creatorcontrib><creatorcontrib>Tan, Riming</creatorcontrib><creatorcontrib>Xu, Jifeng</creatorcontrib><title>Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress transformation, the effect of thermal residual stress was considered using constant thermal amplification factor. Meanwhile, macro-level interlaminar failure was defined with cohesive elements. Based on the simulated and experimental results, the sub-laminate scaled OHC laminates of the stacking sequence [45/0/−45/90] 4s were studied at different temperatures. The established multiscale model showed good precision in the strength and failure mode predictions. Transverse throughout damage at the hole section led to the final failure. As the temperature increased, the damage process began at a lower load level and the strength of the laminates decreased significantly. Stiffness reductions and small load drops were more likely to occur before final failure. The differences in the delamination size among all interfaces tended to be smaller. Besides, matrix failure lagged under shear loading conditions if the thermal residual stress was neglected in the multiscale analysis.</description><subject>Carbon fiber reinforced plastics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laminates</subject><subject>Materials Science</subject><subject>Micromechanics</subject><subject>Multiscale analysis</subject><subject>Polymer Sciences</subject><subject>Residual stress</subject><subject>Stacking sequence (composite materials)</subject><subject>Stiffness</subject><subject>Thermal transformations</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9H8aZvkcQ7nhMlEp_gW0jYdHW1Tc1th396MCT75cu-Be86B-0PomtFbRqm8A0aTRBDKNNEy1USdoAlLpSCJ0vIUTajmmjClP8_RBcCOUqpkJidoO-tss4casK_wuncdWfrG4blv--AA6u-oF68veGXburODA2wH_GFD7UfAG9f2LthhjFZ8b8GV2HfY4uexGWoobCx6G-LdbfeX6KyyDbir3z1F74uHzXxJVuvHp_lsRQqh-EB0onhZqCrPtGIVF2WllMyFS7izecqiLHOneF6JrKAZF1RSLbi2iYwj1U5M0c2xtw_-a3QwmJ0fQ_wRDGeZZlxJkUQXO7qK4AGCq0wf6taGvWHUHHiaI08TeZoDT6Nihh8zEL3d1oW_5v9DP54deDQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Liu, Zhun</creator><creator>Guan, Zhidong</creator><creator>Tan, Riming</creator><creator>Xu, Jifeng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8614-5398</orcidid></search><sort><creationdate>20190601</creationdate><title>Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy</title><author>Liu, Zhun ; Guan, Zhidong ; Tan, Riming ; Xu, Jifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9482dc8fb6981f23df887b3e42eab517b3dbe82bf36c06230709329a4729a59e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laminates</topic><topic>Materials Science</topic><topic>Micromechanics</topic><topic>Multiscale analysis</topic><topic>Polymer Sciences</topic><topic>Residual stress</topic><topic>Stacking sequence (composite materials)</topic><topic>Stiffness</topic><topic>Thermal transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhun</creatorcontrib><creatorcontrib>Guan, Zhidong</creatorcontrib><creatorcontrib>Tan, Riming</creatorcontrib><creatorcontrib>Xu, Jifeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhun</au><au>Guan, Zhidong</au><au>Tan, Riming</au><au>Xu, Jifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>923</spage><epage>944</epage><pages>923-944</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress transformation, the effect of thermal residual stress was considered using constant thermal amplification factor. Meanwhile, macro-level interlaminar failure was defined with cohesive elements. Based on the simulated and experimental results, the sub-laminate scaled OHC laminates of the stacking sequence [45/0/−45/90] 4s were studied at different temperatures. The established multiscale model showed good precision in the strength and failure mode predictions. Transverse throughout damage at the hole section led to the final failure. As the temperature increased, the damage process began at a lower load level and the strength of the laminates decreased significantly. Stiffness reductions and small load drops were more likely to occur before final failure. The differences in the delamination size among all interfaces tended to be smaller. Besides, matrix failure lagged under shear loading conditions if the thermal residual stress was neglected in the multiscale analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-019-9759-8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8614-5398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-189X
ispartof Applied composite materials, 2019-06, Vol.26 (3), p.923-944
issn 0929-189X
1573-4897
language eng
recordid cdi_proquest_journals_2169128734
source SpringerLink Journals - AutoHoldings
subjects Carbon fiber reinforced plastics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computer simulation
Failure analysis
Failure modes
Industrial Chemistry/Chemical Engineering
Laminates
Materials Science
Micromechanics
Multiscale analysis
Polymer Sciences
Residual stress
Stacking sequence (composite materials)
Stiffness
Thermal transformations
title Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Open-Hole%20Compressive%20CFRP%20Laminates%20at%20Various%20Temperatures%20Based%20on%20a%20Multiscale%20Strategy&rft.jtitle=Applied%20composite%20materials&rft.au=Liu,%20Zhun&rft.date=2019-06-01&rft.volume=26&rft.issue=3&rft.spage=923&rft.epage=944&rft.pages=923-944&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-019-9759-8&rft_dat=%3Cproquest_cross%3E2169128734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169128734&rft_id=info:pmid/&rfr_iscdi=true