Selective photocatalytic C–C coupling of isopropanol into pinacol with concurrent hydrogen evolution over GONaOH photocatalyst

If a sacrificial agent is selectively oxidized to generate high-value chemicals during photocatalytic hydrogen production, then photocatalytic water splitting is more meaningful in consideration of green chemistry. GONaOH was obtained after hydrothermal treatment of graphene oxide (GO) using 10 mol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2019-01, Vol.43 (4), p.1936-1942
Hauptverfasser: Cao, Baoyue, Yu, Yan, Xu, Shan, Qu, Jia, Gao, Ge, Li, Honghong, Gao, Ni, Ren, Youliang, Zhou, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1942
container_issue 4
container_start_page 1936
container_title New journal of chemistry
container_volume 43
creator Cao, Baoyue
Yu, Yan
Xu, Shan
Qu, Jia
Gao, Ge
Li, Honghong
Gao, Ni
Ren, Youliang
Zhou, Chunsheng
description If a sacrificial agent is selectively oxidized to generate high-value chemicals during photocatalytic hydrogen production, then photocatalytic water splitting is more meaningful in consideration of green chemistry. GONaOH was obtained after hydrothermal treatment of graphene oxide (GO) using 10 mol L−1 NaOH. The average hydrogen production rate could reach 7.36 mmol h−1 over 0.50 g L−1 GONaOH photocatalyst for a reaction of 12 h. And the sacrificial agent isopropanol could undergo selective oxidative C–C coupling to generate pinacol. The isopropanol conversion rate was 77.95%, and the pinacol selectivity was 62.32%. Also, the GONaOH photocatalytic selective oxidative C–C coupling mechanism of isopropanol was further studied. The ·OH concentration on the photocatalyst surface was verified as a key factor influencing pinacol selectivity. Under the effect of GONaOH photocatalyst, ·OH radicals were used for the oxidative dehydrogenation of isopropanol to generate 2-hydroxyisopropyl radicals, and pinacol was generated through C–C coupling. Meanwhile, acetone byproducts could further undergo hydrogenation–dehydrogenation coupling reaction with isopropanol to finally generate pinacol.
doi_str_mv 10.1039/c8nj02348d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2169066993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169066993</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-e89ca912f182b29bb29af078b2168e1ace377a659ddf1d2a0bfd09ac0a1fed1c3</originalsourceid><addsrcrecordid>eNpNT81KAzEYDKJgrV58goDn1XzJNpscZdFWKPZg7yWbnzZlSdbdbKW3voNv6JM0oAcPw8zAMMMgdA_kEQiTT1qEPaGsFOYCTYBxWUjK4TJrKMuCzEp-jW6GYU8IQMVhgk4ftrU6-YPF3S6mqFVS7TF5jeuf03eNdRy71octjg77IXZ97FSILfYhRdz5oHQ2Xz7tcjLose9tSHh3NH3c2oDtIbZj8jHgeLA9nq_e1Wrxf2hIt-jKqXawd388RevXl3W9KJar-Vv9vCw6KVJhhdRKAnUgaENlk6EcqURDgQsLSltWVYrPpDEODFWkcYZIpYkCZw1oNkUPv7X5wedoh7TZx7EPeXGTKyThXErGziXaZYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169066993</pqid></control><display><type>article</type><title>Selective photocatalytic C–C coupling of isopropanol into pinacol with concurrent hydrogen evolution over GONaOH photocatalyst</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cao, Baoyue ; Yu, Yan ; Xu, Shan ; Qu, Jia ; Gao, Ge ; Li, Honghong ; Gao, Ni ; Ren, Youliang ; Zhou, Chunsheng</creator><creatorcontrib>Cao, Baoyue ; Yu, Yan ; Xu, Shan ; Qu, Jia ; Gao, Ge ; Li, Honghong ; Gao, Ni ; Ren, Youliang ; Zhou, Chunsheng</creatorcontrib><description>If a sacrificial agent is selectively oxidized to generate high-value chemicals during photocatalytic hydrogen production, then photocatalytic water splitting is more meaningful in consideration of green chemistry. GONaOH was obtained after hydrothermal treatment of graphene oxide (GO) using 10 mol L−1 NaOH. The average hydrogen production rate could reach 7.36 mmol h−1 over 0.50 g L−1 GONaOH photocatalyst for a reaction of 12 h. And the sacrificial agent isopropanol could undergo selective oxidative C–C coupling to generate pinacol. The isopropanol conversion rate was 77.95%, and the pinacol selectivity was 62.32%. Also, the GONaOH photocatalytic selective oxidative C–C coupling mechanism of isopropanol was further studied. The ·OH concentration on the photocatalyst surface was verified as a key factor influencing pinacol selectivity. Under the effect of GONaOH photocatalyst, ·OH radicals were used for the oxidative dehydrogenation of isopropanol to generate 2-hydroxyisopropyl radicals, and pinacol was generated through C–C coupling. Meanwhile, acetone byproducts could further undergo hydrogenation–dehydrogenation coupling reaction with isopropanol to finally generate pinacol.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/c8nj02348d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acetone ; Coupling ; Dehydrogenation ; Graphene ; Hydrogen evolution ; Hydrogen production ; Hydrogen storage ; Hydrothermal treatment ; Isopropanol ; Organic chemistry ; Photocatalysis ; Photocatalysts ; Radicals ; Selectivity ; Sodium hydroxide ; Water splitting</subject><ispartof>New journal of chemistry, 2019-01, Vol.43 (4), p.1936-1942</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Cao, Baoyue</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Xu, Shan</creatorcontrib><creatorcontrib>Qu, Jia</creatorcontrib><creatorcontrib>Gao, Ge</creatorcontrib><creatorcontrib>Li, Honghong</creatorcontrib><creatorcontrib>Gao, Ni</creatorcontrib><creatorcontrib>Ren, Youliang</creatorcontrib><creatorcontrib>Zhou, Chunsheng</creatorcontrib><title>Selective photocatalytic C–C coupling of isopropanol into pinacol with concurrent hydrogen evolution over GONaOH photocatalyst</title><title>New journal of chemistry</title><description>If a sacrificial agent is selectively oxidized to generate high-value chemicals during photocatalytic hydrogen production, then photocatalytic water splitting is more meaningful in consideration of green chemistry. GONaOH was obtained after hydrothermal treatment of graphene oxide (GO) using 10 mol L−1 NaOH. The average hydrogen production rate could reach 7.36 mmol h−1 over 0.50 g L−1 GONaOH photocatalyst for a reaction of 12 h. And the sacrificial agent isopropanol could undergo selective oxidative C–C coupling to generate pinacol. The isopropanol conversion rate was 77.95%, and the pinacol selectivity was 62.32%. Also, the GONaOH photocatalytic selective oxidative C–C coupling mechanism of isopropanol was further studied. The ·OH concentration on the photocatalyst surface was verified as a key factor influencing pinacol selectivity. Under the effect of GONaOH photocatalyst, ·OH radicals were used for the oxidative dehydrogenation of isopropanol to generate 2-hydroxyisopropyl radicals, and pinacol was generated through C–C coupling. Meanwhile, acetone byproducts could further undergo hydrogenation–dehydrogenation coupling reaction with isopropanol to finally generate pinacol.</description><subject>Acetone</subject><subject>Coupling</subject><subject>Dehydrogenation</subject><subject>Graphene</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydrogen storage</subject><subject>Hydrothermal treatment</subject><subject>Isopropanol</subject><subject>Organic chemistry</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Radicals</subject><subject>Selectivity</subject><subject>Sodium hydroxide</subject><subject>Water splitting</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNT81KAzEYDKJgrV58goDn1XzJNpscZdFWKPZg7yWbnzZlSdbdbKW3voNv6JM0oAcPw8zAMMMgdA_kEQiTT1qEPaGsFOYCTYBxWUjK4TJrKMuCzEp-jW6GYU8IQMVhgk4ftrU6-YPF3S6mqFVS7TF5jeuf03eNdRy71octjg77IXZ97FSILfYhRdz5oHQ2Xz7tcjLose9tSHh3NH3c2oDtIbZj8jHgeLA9nq_e1Wrxf2hIt-jKqXawd388RevXl3W9KJar-Vv9vCw6KVJhhdRKAnUgaENlk6EcqURDgQsLSltWVYrPpDEODFWkcYZIpYkCZw1oNkUPv7X5wedoh7TZx7EPeXGTKyThXErGziXaZYo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Cao, Baoyue</creator><creator>Yu, Yan</creator><creator>Xu, Shan</creator><creator>Qu, Jia</creator><creator>Gao, Ge</creator><creator>Li, Honghong</creator><creator>Gao, Ni</creator><creator>Ren, Youliang</creator><creator>Zhou, Chunsheng</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20190101</creationdate><title>Selective photocatalytic C–C coupling of isopropanol into pinacol with concurrent hydrogen evolution over GONaOH photocatalyst</title><author>Cao, Baoyue ; Yu, Yan ; Xu, Shan ; Qu, Jia ; Gao, Ge ; Li, Honghong ; Gao, Ni ; Ren, Youliang ; Zhou, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-e89ca912f182b29bb29af078b2168e1ace377a659ddf1d2a0bfd09ac0a1fed1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Coupling</topic><topic>Dehydrogenation</topic><topic>Graphene</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydrogen storage</topic><topic>Hydrothermal treatment</topic><topic>Isopropanol</topic><topic>Organic chemistry</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Radicals</topic><topic>Selectivity</topic><topic>Sodium hydroxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Baoyue</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Xu, Shan</creatorcontrib><creatorcontrib>Qu, Jia</creatorcontrib><creatorcontrib>Gao, Ge</creatorcontrib><creatorcontrib>Li, Honghong</creatorcontrib><creatorcontrib>Gao, Ni</creatorcontrib><creatorcontrib>Ren, Youliang</creatorcontrib><creatorcontrib>Zhou, Chunsheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Baoyue</au><au>Yu, Yan</au><au>Xu, Shan</au><au>Qu, Jia</au><au>Gao, Ge</au><au>Li, Honghong</au><au>Gao, Ni</au><au>Ren, Youliang</au><au>Zhou, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective photocatalytic C–C coupling of isopropanol into pinacol with concurrent hydrogen evolution over GONaOH photocatalyst</atitle><jtitle>New journal of chemistry</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>43</volume><issue>4</issue><spage>1936</spage><epage>1942</epage><pages>1936-1942</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>If a sacrificial agent is selectively oxidized to generate high-value chemicals during photocatalytic hydrogen production, then photocatalytic water splitting is more meaningful in consideration of green chemistry. GONaOH was obtained after hydrothermal treatment of graphene oxide (GO) using 10 mol L−1 NaOH. The average hydrogen production rate could reach 7.36 mmol h−1 over 0.50 g L−1 GONaOH photocatalyst for a reaction of 12 h. And the sacrificial agent isopropanol could undergo selective oxidative C–C coupling to generate pinacol. The isopropanol conversion rate was 77.95%, and the pinacol selectivity was 62.32%. Also, the GONaOH photocatalytic selective oxidative C–C coupling mechanism of isopropanol was further studied. The ·OH concentration on the photocatalyst surface was verified as a key factor influencing pinacol selectivity. Under the effect of GONaOH photocatalyst, ·OH radicals were used for the oxidative dehydrogenation of isopropanol to generate 2-hydroxyisopropyl radicals, and pinacol was generated through C–C coupling. Meanwhile, acetone byproducts could further undergo hydrogenation–dehydrogenation coupling reaction with isopropanol to finally generate pinacol.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8nj02348d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2019-01, Vol.43 (4), p.1936-1942
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2169066993
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Acetone
Coupling
Dehydrogenation
Graphene
Hydrogen evolution
Hydrogen production
Hydrogen storage
Hydrothermal treatment
Isopropanol
Organic chemistry
Photocatalysis
Photocatalysts
Radicals
Selectivity
Sodium hydroxide
Water splitting
title Selective photocatalytic C–C coupling of isopropanol into pinacol with concurrent hydrogen evolution over GONaOH photocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20photocatalytic%20C%E2%80%93C%20coupling%20of%20isopropanol%20into%20pinacol%20with%20concurrent%20hydrogen%20evolution%20over%20GONaOH%20photocatalyst&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Cao,%20Baoyue&rft.date=2019-01-01&rft.volume=43&rft.issue=4&rft.spage=1936&rft.epage=1942&rft.pages=1936-1942&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/c8nj02348d&rft_dat=%3Cproquest%3E2169066993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169066993&rft_id=info:pmid/&rfr_iscdi=true