Storage of Hydrogen in Activated Carbons and Carbon Nanotubes

Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science 2018-12, Vol.18 (4), p.5-16
Hauptverfasser: Doğan, E. E., Tokcan, P., Kizilduman, B. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 4
container_start_page 5
container_title Advances in materials science
container_volume 18
creator Doğan, E. E.
Tokcan, P.
Kizilduman, B. K.
description Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.
doi_str_mv 10.1515/adms-2017-0045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168586665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168586665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9292ad34b2edd332117f3e12fbbec42d96c2ff3dafb45bba3e2d38bea18a03ec3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKtb1wHXU_OYzENwUYpaoehCXYebyU1paSc1ySj9985QRReu7lmc71z4CLnkbMIVV9dgtzETjJcZY7k6IiPBKpnlZV0f_8mn5CzGNWOFFKUckduX5AMskXpH53sb_BJbumrptEmrD0ho6QyC8W2k0P5k-gStT53BeE5OHGwiXnzfMXm7v3udzbPF88PjbLrIGilUympRC7AyNwKtlVJwXjqJXDhjsMmFrYtGOCctOJMrY0CisLIyCLwCJrGRY3J12N0F_95hTHrtu9D2L7XgRaWqoihU35ocWk3wMQZ0ehdWWwh7zZkeFOlBkR4U6UFRD9wcgE_YJAwWl6Hb9-F3_X-QVz38BemDbYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168586665</pqid></control><display><type>article</type><title>Storage of Hydrogen in Activated Carbons and Carbon Nanotubes</title><source>De Gruyter Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Doğan, E. E. ; Tokcan, P. ; Kizilduman, B. K.</creator><creatorcontrib>Doğan, E. E. ; Tokcan, P. ; Kizilduman, B. K.</creatorcontrib><description>Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.</description><identifier>ISSN: 2083-4799</identifier><identifier>ISSN: 1730-2439</identifier><identifier>EISSN: 2083-4799</identifier><identifier>DOI: 10.1515/adms-2017-0045</identifier><language>eng</language><publisher>Gdansk: Sciendo</publisher><subject>Activated carbon ; carbon nanotube ; Carbon nanotubes ; Chemical synthesis ; Chemical vapor deposition ; Hydrogen ; hydrogen energy ; Hydrogen storage ; Olive leaf ; Organic chemistry ; Scanning electron microscopy ; Storage capacity ; Surface area ; X-ray diffraction</subject><ispartof>Advances in materials science, 2018-12, Vol.18 (4), p.5-16</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9292ad34b2edd332117f3e12fbbec42d96c2ff3dafb45bba3e2d38bea18a03ec3</citedby><cites>FETCH-LOGICAL-c325t-9292ad34b2edd332117f3e12fbbec42d96c2ff3dafb45bba3e2d38bea18a03ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.1515/adms-2017-0045$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.1515/adms-2017-0045$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,75921,75922</link.rule.ids></links><search><creatorcontrib>Doğan, E. E.</creatorcontrib><creatorcontrib>Tokcan, P.</creatorcontrib><creatorcontrib>Kizilduman, B. K.</creatorcontrib><title>Storage of Hydrogen in Activated Carbons and Carbon Nanotubes</title><title>Advances in materials science</title><description>Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.</description><subject>Activated carbon</subject><subject>carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Hydrogen</subject><subject>hydrogen energy</subject><subject>Hydrogen storage</subject><subject>Olive leaf</subject><subject>Organic chemistry</subject><subject>Scanning electron microscopy</subject><subject>Storage capacity</subject><subject>Surface area</subject><subject>X-ray diffraction</subject><issn>2083-4799</issn><issn>1730-2439</issn><issn>2083-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtLAzEUhYMoWKtb1wHXU_OYzENwUYpaoehCXYebyU1paSc1ySj9985QRReu7lmc71z4CLnkbMIVV9dgtzETjJcZY7k6IiPBKpnlZV0f_8mn5CzGNWOFFKUckduX5AMskXpH53sb_BJbumrptEmrD0ho6QyC8W2k0P5k-gStT53BeE5OHGwiXnzfMXm7v3udzbPF88PjbLrIGilUympRC7AyNwKtlVJwXjqJXDhjsMmFrYtGOCctOJMrY0CisLIyCLwCJrGRY3J12N0F_95hTHrtu9D2L7XgRaWqoihU35ocWk3wMQZ0ehdWWwh7zZkeFOlBkR4U6UFRD9wcgE_YJAwWl6Hb9-F3_X-QVz38BemDbYo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Doğan, E. E.</creator><creator>Tokcan, P.</creator><creator>Kizilduman, B. K.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181201</creationdate><title>Storage of Hydrogen in Activated Carbons and Carbon Nanotubes</title><author>Doğan, E. E. ; Tokcan, P. ; Kizilduman, B. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9292ad34b2edd332117f3e12fbbec42d96c2ff3dafb45bba3e2d38bea18a03ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Hydrogen</topic><topic>hydrogen energy</topic><topic>Hydrogen storage</topic><topic>Olive leaf</topic><topic>Organic chemistry</topic><topic>Scanning electron microscopy</topic><topic>Storage capacity</topic><topic>Surface area</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doğan, E. E.</creatorcontrib><creatorcontrib>Tokcan, P.</creatorcontrib><creatorcontrib>Kizilduman, B. K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advances in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doğan, E. E.</au><au>Tokcan, P.</au><au>Kizilduman, B. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Storage of Hydrogen in Activated Carbons and Carbon Nanotubes</atitle><jtitle>Advances in materials science</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>5</spage><epage>16</epage><pages>5-16</pages><issn>2083-4799</issn><issn>1730-2439</issn><eissn>2083-4799</eissn><abstract>Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.</abstract><cop>Gdansk</cop><pub>Sciendo</pub><doi>10.1515/adms-2017-0045</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2083-4799
ispartof Advances in materials science, 2018-12, Vol.18 (4), p.5-16
issn 2083-4799
1730-2439
2083-4799
language eng
recordid cdi_proquest_journals_2168586665
source De Gruyter Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Activated carbon
carbon nanotube
Carbon nanotubes
Chemical synthesis
Chemical vapor deposition
Hydrogen
hydrogen energy
Hydrogen storage
Olive leaf
Organic chemistry
Scanning electron microscopy
Storage capacity
Surface area
X-ray diffraction
title Storage of Hydrogen in Activated Carbons and Carbon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Storage%20of%20Hydrogen%20in%20Activated%20Carbons%20and%20Carbon%20Nanotubes&rft.jtitle=Advances%20in%20materials%20science&rft.au=Do%C4%9Fan,%20E.%20E.&rft.date=2018-12-01&rft.volume=18&rft.issue=4&rft.spage=5&rft.epage=16&rft.pages=5-16&rft.issn=2083-4799&rft.eissn=2083-4799&rft_id=info:doi/10.1515/adms-2017-0045&rft_dat=%3Cproquest_cross%3E2168586665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168586665&rft_id=info:pmid/&rfr_iscdi=true