Structural vibration analysis with random fields using the hierarchical finite element method
Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-02, Vol.41 (2), p.1-19, Article 80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
container_volume | 41 |
creator | Fabro, A. T. Ferguson, N. S. Mace, B. R. |
description | Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard
h
-version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation. |
doi_str_mv | 10.1007/s40430-019-1579-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168536431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168536431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19GkaR5dyuALBlyoSwmZ5HaaoY8xSRX_vR0quHJ1z-J8B-6H0CWj14xSdZNKWnJKKKsIE6oi9AgtmKaScFmx4ylLpYnQSp-is5R2lPJCSLFA7y85ji6P0bb4M2yizWHose1t-51Cwl8hNzja3g8drgO0PuExhX6LcwO4CRBtdE1wE1yHPmTA0EIHfcYd5Gbw5-iktm2Ci9-7RG_3d6-rR7J-fnha3a6J46LKRHILdMN84UsvrOKalkqC9lKA5MLXHKjW0glQTjnBPQDfMAu1Fcz5ylV8ia7m3X0cPkZI2eyGMU5PJFMwqQWXJWdTi80tF4eUItRmH0Nn47dh1BwsmtmimSyag0VDJ6aYmTR1-y3Ev-X_oR-MyHb1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168536431</pqid></control><display><type>article</type><title>Structural vibration analysis with random fields using the hierarchical finite element method</title><source>SpringerLink Journals</source><creator>Fabro, A. T. ; Ferguson, N. S. ; Mace, B. R.</creator><creatorcontrib>Fabro, A. T. ; Ferguson, N. S. ; Mace, B. R.</creatorcontrib><description>Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard
h
-version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-019-1579-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational efficiency ; Computer simulation ; Engineering ; Fields (mathematics) ; Finite element analysis ; Finite element method ; Free vibration ; Functions (mathematics) ; Mechanical Engineering ; Polynomials ; Randomness ; Sampling ; Stiffness matrix ; Structural vibration ; Technical Paper ; Vibration analysis</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-02, Vol.41 (2), p.1-19, Article 80</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</citedby><cites>FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-019-1579-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-019-1579-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Fabro, A. T.</creatorcontrib><creatorcontrib>Ferguson, N. S.</creatorcontrib><creatorcontrib>Mace, B. R.</creatorcontrib><title>Structural vibration analysis with random fields using the hierarchical finite element method</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard
h
-version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.</description><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Fields (mathematics)</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Free vibration</subject><subject>Functions (mathematics)</subject><subject>Mechanical Engineering</subject><subject>Polynomials</subject><subject>Randomness</subject><subject>Sampling</subject><subject>Stiffness matrix</subject><subject>Structural vibration</subject><subject>Technical Paper</subject><subject>Vibration analysis</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19GkaR5dyuALBlyoSwmZ5HaaoY8xSRX_vR0quHJ1z-J8B-6H0CWj14xSdZNKWnJKKKsIE6oi9AgtmKaScFmx4ylLpYnQSp-is5R2lPJCSLFA7y85ji6P0bb4M2yizWHose1t-51Cwl8hNzja3g8drgO0PuExhX6LcwO4CRBtdE1wE1yHPmTA0EIHfcYd5Gbw5-iktm2Ci9-7RG_3d6-rR7J-fnha3a6J46LKRHILdMN84UsvrOKalkqC9lKA5MLXHKjW0glQTjnBPQDfMAu1Fcz5ylV8ia7m3X0cPkZI2eyGMU5PJFMwqQWXJWdTi80tF4eUItRmH0Nn47dh1BwsmtmimSyag0VDJ6aYmTR1-y3Ev-X_oR-MyHb1</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Fabro, A. T.</creator><creator>Ferguson, N. S.</creator><creator>Mace, B. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Structural vibration analysis with random fields using the hierarchical finite element method</title><author>Fabro, A. T. ; Ferguson, N. S. ; Mace, B. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Fields (mathematics)</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Free vibration</topic><topic>Functions (mathematics)</topic><topic>Mechanical Engineering</topic><topic>Polynomials</topic><topic>Randomness</topic><topic>Sampling</topic><topic>Stiffness matrix</topic><topic>Structural vibration</topic><topic>Technical Paper</topic><topic>Vibration analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fabro, A. T.</creatorcontrib><creatorcontrib>Ferguson, N. S.</creatorcontrib><creatorcontrib>Mace, B. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabro, A. T.</au><au>Ferguson, N. S.</au><au>Mace, B. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural vibration analysis with random fields using the hierarchical finite element method</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>41</volume><issue>2</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>80</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard
h
-version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-019-1579-0</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5878 |
ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-02, Vol.41 (2), p.1-19, Article 80 |
issn | 1678-5878 1806-3691 |
language | eng |
recordid | cdi_proquest_journals_2168536431 |
source | SpringerLink Journals |
subjects | Computational efficiency Computer simulation Engineering Fields (mathematics) Finite element analysis Finite element method Free vibration Functions (mathematics) Mechanical Engineering Polynomials Randomness Sampling Stiffness matrix Structural vibration Technical Paper Vibration analysis |
title | Structural vibration analysis with random fields using the hierarchical finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20vibration%20analysis%20with%20random%20fields%20using%20the%20hierarchical%20finite%20element%20method&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Fabro,%20A.%20T.&rft.date=2019-02-01&rft.volume=41&rft.issue=2&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=80&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-019-1579-0&rft_dat=%3Cproquest_cross%3E2168536431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168536431&rft_id=info:pmid/&rfr_iscdi=true |