Structural vibration analysis with random fields using the hierarchical finite element method

Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-02, Vol.41 (2), p.1-19, Article 80
Hauptverfasser: Fabro, A. T., Ferguson, N. S., Mace, B. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 2
container_start_page 1
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 41
creator Fabro, A. T.
Ferguson, N. S.
Mace, B. R.
description Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard h -version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.
doi_str_mv 10.1007/s40430-019-1579-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168536431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168536431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19GkaR5dyuALBlyoSwmZ5HaaoY8xSRX_vR0quHJ1z-J8B-6H0CWj14xSdZNKWnJKKKsIE6oi9AgtmKaScFmx4ylLpYnQSp-is5R2lPJCSLFA7y85ji6P0bb4M2yizWHose1t-51Cwl8hNzja3g8drgO0PuExhX6LcwO4CRBtdE1wE1yHPmTA0EIHfcYd5Gbw5-iktm2Ci9-7RG_3d6-rR7J-fnha3a6J46LKRHILdMN84UsvrOKalkqC9lKA5MLXHKjW0glQTjnBPQDfMAu1Fcz5ylV8ia7m3X0cPkZI2eyGMU5PJFMwqQWXJWdTi80tF4eUItRmH0Nn47dh1BwsmtmimSyag0VDJ6aYmTR1-y3Ev-X_oR-MyHb1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168536431</pqid></control><display><type>article</type><title>Structural vibration analysis with random fields using the hierarchical finite element method</title><source>SpringerLink Journals</source><creator>Fabro, A. T. ; Ferguson, N. S. ; Mace, B. R.</creator><creatorcontrib>Fabro, A. T. ; Ferguson, N. S. ; Mace, B. R.</creatorcontrib><description>Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard h -version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-019-1579-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational efficiency ; Computer simulation ; Engineering ; Fields (mathematics) ; Finite element analysis ; Finite element method ; Free vibration ; Functions (mathematics) ; Mechanical Engineering ; Polynomials ; Randomness ; Sampling ; Stiffness matrix ; Structural vibration ; Technical Paper ; Vibration analysis</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-02, Vol.41 (2), p.1-19, Article 80</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</citedby><cites>FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-019-1579-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-019-1579-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Fabro, A. T.</creatorcontrib><creatorcontrib>Ferguson, N. S.</creatorcontrib><creatorcontrib>Mace, B. R.</creatorcontrib><title>Structural vibration analysis with random fields using the hierarchical finite element method</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard h -version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.</description><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Fields (mathematics)</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Free vibration</subject><subject>Functions (mathematics)</subject><subject>Mechanical Engineering</subject><subject>Polynomials</subject><subject>Randomness</subject><subject>Sampling</subject><subject>Stiffness matrix</subject><subject>Structural vibration</subject><subject>Technical Paper</subject><subject>Vibration analysis</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19GkaR5dyuALBlyoSwmZ5HaaoY8xSRX_vR0quHJ1z-J8B-6H0CWj14xSdZNKWnJKKKsIE6oi9AgtmKaScFmx4ylLpYnQSp-is5R2lPJCSLFA7y85ji6P0bb4M2yizWHose1t-51Cwl8hNzja3g8drgO0PuExhX6LcwO4CRBtdE1wE1yHPmTA0EIHfcYd5Gbw5-iktm2Ci9-7RG_3d6-rR7J-fnha3a6J46LKRHILdMN84UsvrOKalkqC9lKA5MLXHKjW0glQTjnBPQDfMAu1Fcz5ylV8ia7m3X0cPkZI2eyGMU5PJFMwqQWXJWdTi80tF4eUItRmH0Nn47dh1BwsmtmimSyag0VDJ6aYmTR1-y3Ev-X_oR-MyHb1</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Fabro, A. T.</creator><creator>Ferguson, N. S.</creator><creator>Mace, B. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Structural vibration analysis with random fields using the hierarchical finite element method</title><author>Fabro, A. T. ; Ferguson, N. S. ; Mace, B. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-63ae0b1d2d4d5a7380476e8d65e635df3e0886c5e7c7c53dee3b1aefa51cd9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Fields (mathematics)</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Free vibration</topic><topic>Functions (mathematics)</topic><topic>Mechanical Engineering</topic><topic>Polynomials</topic><topic>Randomness</topic><topic>Sampling</topic><topic>Stiffness matrix</topic><topic>Structural vibration</topic><topic>Technical Paper</topic><topic>Vibration analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fabro, A. T.</creatorcontrib><creatorcontrib>Ferguson, N. S.</creatorcontrib><creatorcontrib>Mace, B. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabro, A. T.</au><au>Ferguson, N. S.</au><au>Mace, B. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural vibration analysis with random fields using the hierarchical finite element method</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>41</volume><issue>2</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>80</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Element-based techniques, like the finite element method, are the standard approach in industry for low-frequency applications in structural dynamics. However, mesh requirements can significantly increase the computational cost for increasing frequencies. In addition, randomness in system properties starts to play a significant role and its inclusion in the model further increases the computational cost. In this paper, a hierarchical finite element formulation is presented which incorporates spatially random properties. Polynomial and trigonometric hierarchical functions are used in the element formulation. Material and geometrical spatially correlated randomness are represented by the Karhunen–Loève expansion, a series representation for random fields. It allows the element integration to be performed only once for each term of the series which has benefits for a sampling scheme and can be used for non-Gaussian distributions. Free vibration and forced response statistics are calculated using the proposed approach. Compared to the standard h -version, the hierarchical finite element approach produces smaller mass and stiffness matrices, without changing the number of nodes of the element, and tends to be computationally more efficient. These are key factors not only when considering solutions for higher frequencies but also in the calculation of response statistics using a sampling method such as Monte Carlo simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-019-1579-0</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-02, Vol.41 (2), p.1-19, Article 80
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2168536431
source SpringerLink Journals
subjects Computational efficiency
Computer simulation
Engineering
Fields (mathematics)
Finite element analysis
Finite element method
Free vibration
Functions (mathematics)
Mechanical Engineering
Polynomials
Randomness
Sampling
Stiffness matrix
Structural vibration
Technical Paper
Vibration analysis
title Structural vibration analysis with random fields using the hierarchical finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20vibration%20analysis%20with%20random%20fields%20using%20the%20hierarchical%20finite%20element%20method&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Fabro,%20A.%20T.&rft.date=2019-02-01&rft.volume=41&rft.issue=2&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=80&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-019-1579-0&rft_dat=%3Cproquest_cross%3E2168536431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168536431&rft_id=info:pmid/&rfr_iscdi=true