Generating automatically labeled data for author name disambiguation: an iterative clustering method
To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited refere...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2019-01, Vol.118 (1), p.253-280 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 1 |
container_start_page | 253 |
container_title | Scientometrics |
container_volume | 118 |
creator | Kim, Jinseok Kim, Jinmo Owen-Smith, Jason |
description | To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise
F
1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise
F
1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data. |
doi_str_mv | 10.1007/s11192-018-2968-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168536089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168536089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI4-gLuA62pu0qaJOxl0FAbc6DrctsnYoX8mrTBvb2oFV65uLvnOCfkIuQZ2C4zldwEANE8YqIRrqRJxQlaQqbgpCadkxUCoRINg5-QihAOLjGBqRaqt7azHse72FKexb-OxxKY50gYL29iKVjgidb2frz_i6LC1tKoDtkW9n2K87-4pdrQefzxflpbNFOIyK1sbmeqSnDlsgr36nWvy_vT4tnlOdq_bl83DLimF1GMiEVKHGqUUjBWZLAtXKmerMhPS8TSrnEo1h1xpy7mzrHCImFvIWJbKnHGxJjeLd_D952TDaA795Lv4pOEgVdQwpWMKllTp-xC8dWbwdYv-aICZuUyzlGlimWYu04jI8IUJw_wv6__M_0Pf0rJ43Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168536089</pqid></control><display><type>article</type><title>Generating automatically labeled data for author name disambiguation: an iterative clustering method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Jinseok ; Kim, Jinmo ; Owen-Smith, Jason</creator><creatorcontrib>Kim, Jinseok ; Kim, Jinmo ; Owen-Smith, Jason</creatorcontrib><description>To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise
F
1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise
F
1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-018-2968-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Clustering ; Computer Science ; Group size ; Information Storage and Retrieval ; Learning algorithms ; Library Science ; Machine learning ; Matching ; Minority & ethnic groups</subject><ispartof>Scientometrics, 2019-01, Vol.118 (1), p.253-280</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>Copyright Springer Science & Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</citedby><cites>FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</cites><orcidid>0000-0001-6481-2065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-018-2968-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-018-2968-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Jinseok</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Owen-Smith, Jason</creatorcontrib><title>Generating automatically labeled data for author name disambiguation: an iterative clustering method</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise
F
1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise
F
1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Group size</subject><subject>Information Storage and Retrieval</subject><subject>Learning algorithms</subject><subject>Library Science</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Minority & ethnic groups</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoOI4-gLuA62pu0qaJOxl0FAbc6DrctsnYoX8mrTBvb2oFV65uLvnOCfkIuQZ2C4zldwEANE8YqIRrqRJxQlaQqbgpCadkxUCoRINg5-QihAOLjGBqRaqt7azHse72FKexb-OxxKY50gYL29iKVjgidb2frz_i6LC1tKoDtkW9n2K87-4pdrQefzxflpbNFOIyK1sbmeqSnDlsgr36nWvy_vT4tnlOdq_bl83DLimF1GMiEVKHGqUUjBWZLAtXKmerMhPS8TSrnEo1h1xpy7mzrHCImFvIWJbKnHGxJjeLd_D952TDaA795Lv4pOEgVdQwpWMKllTp-xC8dWbwdYv-aICZuUyzlGlimWYu04jI8IUJw_wv6__M_0Pf0rJ43Q</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kim, Jinseok</creator><creator>Kim, Jinmo</creator><creator>Owen-Smith, Jason</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0001-6481-2065</orcidid></search><sort><creationdate>20190101</creationdate><title>Generating automatically labeled data for author name disambiguation: an iterative clustering method</title><author>Kim, Jinseok ; Kim, Jinmo ; Owen-Smith, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Group size</topic><topic>Information Storage and Retrieval</topic><topic>Learning algorithms</topic><topic>Library Science</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Minority & ethnic groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinseok</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Owen-Smith, Jason</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinseok</au><au>Kim, Jinmo</au><au>Owen-Smith, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating automatically labeled data for author name disambiguation: an iterative clustering method</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>118</volume><issue>1</issue><spage>253</spage><epage>280</epage><pages>253-280</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise
F
1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise
F
1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-018-2968-3</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-6481-2065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2019-01, Vol.118 (1), p.253-280 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_2168536089 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial intelligence Clustering Computer Science Group size Information Storage and Retrieval Learning algorithms Library Science Machine learning Matching Minority & ethnic groups |
title | Generating automatically labeled data for author name disambiguation: an iterative clustering method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20automatically%20labeled%20data%20for%20author%20name%20disambiguation:%20an%20iterative%20clustering%20method&rft.jtitle=Scientometrics&rft.au=Kim,%20Jinseok&rft.date=2019-01-01&rft.volume=118&rft.issue=1&rft.spage=253&rft.epage=280&rft.pages=253-280&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-018-2968-3&rft_dat=%3Cproquest_cross%3E2168536089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168536089&rft_id=info:pmid/&rfr_iscdi=true |