Generating automatically labeled data for author name disambiguation: an iterative clustering method

To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited refere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics 2019-01, Vol.118 (1), p.253-280
Hauptverfasser: Kim, Jinseok, Kim, Jinmo, Owen-Smith, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 1
container_start_page 253
container_title Scientometrics
container_volume 118
creator Kim, Jinseok
Kim, Jinmo
Owen-Smith, Jason
description To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise F 1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise F 1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.
doi_str_mv 10.1007/s11192-018-2968-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168536089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168536089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI4-gLuA62pu0qaJOxl0FAbc6DrctsnYoX8mrTBvb2oFV65uLvnOCfkIuQZ2C4zldwEANE8YqIRrqRJxQlaQqbgpCadkxUCoRINg5-QihAOLjGBqRaqt7azHse72FKexb-OxxKY50gYL29iKVjgidb2frz_i6LC1tKoDtkW9n2K87-4pdrQefzxflpbNFOIyK1sbmeqSnDlsgr36nWvy_vT4tnlOdq_bl83DLimF1GMiEVKHGqUUjBWZLAtXKmerMhPS8TSrnEo1h1xpy7mzrHCImFvIWJbKnHGxJjeLd_D952TDaA795Lv4pOEgVdQwpWMKllTp-xC8dWbwdYv-aICZuUyzlGlimWYu04jI8IUJw_wv6__M_0Pf0rJ43Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168536089</pqid></control><display><type>article</type><title>Generating automatically labeled data for author name disambiguation: an iterative clustering method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Jinseok ; Kim, Jinmo ; Owen-Smith, Jason</creator><creatorcontrib>Kim, Jinseok ; Kim, Jinmo ; Owen-Smith, Jason</creatorcontrib><description>To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise F 1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise F 1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-018-2968-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Clustering ; Computer Science ; Group size ; Information Storage and Retrieval ; Learning algorithms ; Library Science ; Machine learning ; Matching ; Minority &amp; ethnic groups</subject><ispartof>Scientometrics, 2019-01, Vol.118 (1), p.253-280</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</citedby><cites>FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</cites><orcidid>0000-0001-6481-2065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-018-2968-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-018-2968-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Jinseok</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Owen-Smith, Jason</creatorcontrib><title>Generating automatically labeled data for author name disambiguation: an iterative clustering method</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise F 1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise F 1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Group size</subject><subject>Information Storage and Retrieval</subject><subject>Learning algorithms</subject><subject>Library Science</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Minority &amp; ethnic groups</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoOI4-gLuA62pu0qaJOxl0FAbc6DrctsnYoX8mrTBvb2oFV65uLvnOCfkIuQZ2C4zldwEANE8YqIRrqRJxQlaQqbgpCadkxUCoRINg5-QihAOLjGBqRaqt7azHse72FKexb-OxxKY50gYL29iKVjgidb2frz_i6LC1tKoDtkW9n2K87-4pdrQefzxflpbNFOIyK1sbmeqSnDlsgr36nWvy_vT4tnlOdq_bl83DLimF1GMiEVKHGqUUjBWZLAtXKmerMhPS8TSrnEo1h1xpy7mzrHCImFvIWJbKnHGxJjeLd_D952TDaA795Lv4pOEgVdQwpWMKllTp-xC8dWbwdYv-aICZuUyzlGlimWYu04jI8IUJw_wv6__M_0Pf0rJ43Q</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kim, Jinseok</creator><creator>Kim, Jinmo</creator><creator>Owen-Smith, Jason</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0001-6481-2065</orcidid></search><sort><creationdate>20190101</creationdate><title>Generating automatically labeled data for author name disambiguation: an iterative clustering method</title><author>Kim, Jinseok ; Kim, Jinmo ; Owen-Smith, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6a14fa9a66300b56cbfc8fedc536f245df84921789e22fe0bfaaa7e1505467023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Group size</topic><topic>Information Storage and Retrieval</topic><topic>Learning algorithms</topic><topic>Library Science</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Minority &amp; ethnic groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinseok</creatorcontrib><creatorcontrib>Kim, Jinmo</creatorcontrib><creatorcontrib>Owen-Smith, Jason</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinseok</au><au>Kim, Jinmo</au><au>Owen-Smith, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating automatically labeled data for author name disambiguation: an iterative clustering method</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>118</volume><issue>1</issue><spage>253</spage><epage>280</epage><pages>253-280</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26 K instances out of the population of 228 K author name instances, this iterative clustering produced accurately labeled data with pairwise F 1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24 K names in test data with performance of pairwise F 1 = 0.90–0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-018-2968-3</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-6481-2065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2019-01, Vol.118 (1), p.253-280
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_2168536089
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial intelligence
Clustering
Computer Science
Group size
Information Storage and Retrieval
Learning algorithms
Library Science
Machine learning
Matching
Minority & ethnic groups
title Generating automatically labeled data for author name disambiguation: an iterative clustering method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20automatically%20labeled%20data%20for%20author%20name%20disambiguation:%20an%20iterative%20clustering%20method&rft.jtitle=Scientometrics&rft.au=Kim,%20Jinseok&rft.date=2019-01-01&rft.volume=118&rft.issue=1&rft.spage=253&rft.epage=280&rft.pages=253-280&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-018-2968-3&rft_dat=%3Cproquest_cross%3E2168536089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168536089&rft_id=info:pmid/&rfr_iscdi=true