Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials

The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-01, Vol.150 (3), p.034106-034106
Hauptverfasser: Chen, Ming, Baer, Roi, Neuhauser, Daniel, Rabani, Eran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 034106
container_issue 3
container_start_page 034106
container_title The Journal of chemical physics
container_volume 150
creator Chen, Ming
Baer, Roi
Neuhauser, Daniel
Rabani, Eran
description The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.
doi_str_mv 10.1063/1.5064472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168375740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168375740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ee4f507bc6dd8507ca8073e575cea61066432a830d76353907950c0e28cd6f7b3</originalsourceid><addsrcrecordid>eNp90Utr3DAQAGBRUpJtmkP-QDHtpS04HT0s2cew9AWBXNqzkKVx1sG2XEle2H9fmd2m0EJOGsSneWgIuaZwQ0HyT_SmAimEYi_IhkLdlEo2cEY2AIyWjQR5QV7F-AgAVDFxTi44SAlUsg0x93sMg5lndAWOLTqXgy6YhxGnVMTk7c7E1NvC4RT7dCi6ZbKp95MZirRDH_KND4X1ezPkF8OhbP205hhNwtCbIb4mL7t84NXpvCQ_v3z-sf1W3t1__b69vSutEFUqEUVXgWqtdK7OgTU1KI6VqiwamceUgjNTc3BK8oo3oJoKLCCrrZOdavkleXvM63O_Oto-od1ZP01ok6aiYZyzjN4f0Rz8rwVj0mMfLQ6DmdAvUTOqGgG5Up3pu3_oo19CnntVsuaqUgKy-nBUNvgYA3Z6Dv1owkFT0OtyNNWn5WT75pRxaUd0T_LPNjL4eARr92b95Sez9-FvJj277jn8f-nf5FKk3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168375740</pqid></control><display><type>article</type><title>Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Ming ; Baer, Roi ; Neuhauser, Daniel ; Rabani, Eran</creator><creatorcontrib>Chen, Ming ; Baer, Roi ; Neuhauser, Daniel ; Rabani, Eran ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5064472</identifier><identifier>PMID: 30660162</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bonding ; Covalence ; Density functional theory ; Electrons ; Embedded systems ; Error reduction ; Fragmentation ; Fragments ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematical analysis ; Matrix methods ; Noise reduction ; Physics ; Scaling</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (3), p.034106-034106</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ee4f507bc6dd8507ca8073e575cea61066432a830d76353907950c0e28cd6f7b3</citedby><cites>FETCH-LOGICAL-c445t-ee4f507bc6dd8507ca8073e575cea61066432a830d76353907950c0e28cd6f7b3</cites><orcidid>0000-0001-8432-1925 ; 0000000184321925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5064472$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30660162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1492332$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Baer, Roi</creatorcontrib><creatorcontrib>Neuhauser, Daniel</creatorcontrib><creatorcontrib>Rabani, Eran</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.</description><subject>Bonding</subject><subject>Covalence</subject><subject>Density functional theory</subject><subject>Electrons</subject><subject>Embedded systems</subject><subject>Error reduction</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Noise reduction</subject><subject>Physics</subject><subject>Scaling</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90Utr3DAQAGBRUpJtmkP-QDHtpS04HT0s2cew9AWBXNqzkKVx1sG2XEle2H9fmd2m0EJOGsSneWgIuaZwQ0HyT_SmAimEYi_IhkLdlEo2cEY2AIyWjQR5QV7F-AgAVDFxTi44SAlUsg0x93sMg5lndAWOLTqXgy6YhxGnVMTk7c7E1NvC4RT7dCi6ZbKp95MZirRDH_KND4X1ezPkF8OhbP205hhNwtCbIb4mL7t84NXpvCQ_v3z-sf1W3t1__b69vSutEFUqEUVXgWqtdK7OgTU1KI6VqiwamceUgjNTc3BK8oo3oJoKLCCrrZOdavkleXvM63O_Oto-od1ZP01ok6aiYZyzjN4f0Rz8rwVj0mMfLQ6DmdAvUTOqGgG5Up3pu3_oo19CnntVsuaqUgKy-nBUNvgYA3Z6Dv1owkFT0OtyNNWn5WT75pRxaUd0T_LPNjL4eARr92b95Sez9-FvJj277jn8f-nf5FKk3w</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Chen, Ming</creator><creator>Baer, Roi</creator><creator>Neuhauser, Daniel</creator><creator>Rabani, Eran</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8432-1925</orcidid><orcidid>https://orcid.org/0000000184321925</orcidid></search><sort><creationdate>20190121</creationdate><title>Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials</title><author>Chen, Ming ; Baer, Roi ; Neuhauser, Daniel ; Rabani, Eran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ee4f507bc6dd8507ca8073e575cea61066432a830d76353907950c0e28cd6f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding</topic><topic>Covalence</topic><topic>Density functional theory</topic><topic>Electrons</topic><topic>Embedded systems</topic><topic>Error reduction</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Noise reduction</topic><topic>Physics</topic><topic>Scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Baer, Roi</creatorcontrib><creatorcontrib>Neuhauser, Daniel</creatorcontrib><creatorcontrib>Rabani, Eran</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ming</au><au>Baer, Roi</au><au>Neuhauser, Daniel</au><au>Rabani, Eran</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-01-21</date><risdate>2019</risdate><volume>150</volume><issue>3</issue><spage>034106</spage><epage>034106</epage><pages>034106-034106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30660162</pmid><doi>10.1063/1.5064472</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8432-1925</orcidid><orcidid>https://orcid.org/0000000184321925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (3), p.034106-034106
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2168375740
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bonding
Covalence
Density functional theory
Electrons
Embedded systems
Error reduction
Fragmentation
Fragments
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mathematical analysis
Matrix methods
Noise reduction
Physics
Scaling
title Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overlapped%20embedded%20fragment%20stochastic%20density%20functional%20theory%20for%20covalently-bonded%20materials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Chen,%20Ming&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-01-21&rft.volume=150&rft.issue=3&rft.spage=034106&rft.epage=034106&rft.pages=034106-034106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5064472&rft_dat=%3Cproquest_cross%3E2168375740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168375740&rft_id=info:pmid/30660162&rfr_iscdi=true