Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels

The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2019-02, Vol.30 (2), p.390-399
Hauptverfasser: Ghasri, Mahsa, Jahandideh, Arash, Kabiri, Kourosh, Bouhendi, Hossein, Zohuriaan‐Mehr, Mohammad J., Moini, Nasrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 2
container_start_page 390
container_title Polymers for advanced technologies
container_volume 30
creator Ghasri, Mahsa
Jahandideh, Arash
Kabiri, Kourosh
Bouhendi, Hossein
Zohuriaan‐Mehr, Mohammad J.
Moini, Nasrin
description The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).
doi_str_mv 10.1002/pat.4476
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168074929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168074929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhiMEEqUg8QiWWFhS7MSJk7GqoCAhwVDm6PjWunLqYKegbCzsPCNPgkNZmc7R-b9z-5PkkuAZwTi76aCfUcrKo2RCcF2npKjI8ZjTLGWEstPkLIQtxlGr2ST5XNpBKO_s98eXBdEbgUAYiUIPPpbCBjolkbNm7VrlA4KAlNZGGLXrETeOQ4h62HsNQqHWSaPNyGnnkWk7797Mbh31TnngwXk-9nXODnEa2gzSu7Wy4Tw50WCDuviL0-Tl7na1uE8fn5YPi_ljKvIcl6mueQEVpToHVuaq0pmQtAbKOKlkjZWMfwMteEW4ZBoKpipaZ4xlhPAyzyCfJleHufGw170KfbN1e7-LK5uMlBVmEa8jdX2ghHcheKWbzpsW_NAQ3IwmN9HkZjQ5oukBfTdWDf9yzfN89cv_ALJ1guk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168074929</pqid></control><display><type>article</type><title>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghasri, Mahsa ; Jahandideh, Arash ; Kabiri, Kourosh ; Bouhendi, Hossein ; Zohuriaan‐Mehr, Mohammad J. ; Moini, Nasrin</creator><creatorcontrib>Ghasri, Mahsa ; Jahandideh, Arash ; Kabiri, Kourosh ; Bouhendi, Hossein ; Zohuriaan‐Mehr, Mohammad J. ; Moini, Nasrin</creatorcontrib><description>The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4476</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Architecture ; Calcium chloride ; Chemical synthesis ; crosslinker, lactic acid ; Crosslinking ; Elasticity ; Fourier transforms ; Glycerol ; Hydrogels ; Lactic acid ; Loss modulus ; Oligomers ; Reflectance ; Rheometry ; Rubber ; Scanning electron microscopy ; Sensitivity analysis ; Sodium chloride ; star shaped ; Storage modulus ; superabsorbent ; Superabsorbent polymers ; surface crosslinking ; Surface treatment</subject><ispartof>Polymers for advanced technologies, 2019-02, Vol.30 (2), p.390-399</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</citedby><cites>FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</cites><orcidid>0000-0002-9318-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.4476$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.4476$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ghasri, Mahsa</creatorcontrib><creatorcontrib>Jahandideh, Arash</creatorcontrib><creatorcontrib>Kabiri, Kourosh</creatorcontrib><creatorcontrib>Bouhendi, Hossein</creatorcontrib><creatorcontrib>Zohuriaan‐Mehr, Mohammad J.</creatorcontrib><creatorcontrib>Moini, Nasrin</creatorcontrib><title>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</title><title>Polymers for advanced technologies</title><description>The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).</description><subject>Architecture</subject><subject>Calcium chloride</subject><subject>Chemical synthesis</subject><subject>crosslinker, lactic acid</subject><subject>Crosslinking</subject><subject>Elasticity</subject><subject>Fourier transforms</subject><subject>Glycerol</subject><subject>Hydrogels</subject><subject>Lactic acid</subject><subject>Loss modulus</subject><subject>Oligomers</subject><subject>Reflectance</subject><subject>Rheometry</subject><subject>Rubber</subject><subject>Scanning electron microscopy</subject><subject>Sensitivity analysis</subject><subject>Sodium chloride</subject><subject>star shaped</subject><subject>Storage modulus</subject><subject>superabsorbent</subject><subject>Superabsorbent polymers</subject><subject>surface crosslinking</subject><subject>Surface treatment</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhiMEEqUg8QiWWFhS7MSJk7GqoCAhwVDm6PjWunLqYKegbCzsPCNPgkNZmc7R-b9z-5PkkuAZwTi76aCfUcrKo2RCcF2npKjI8ZjTLGWEstPkLIQtxlGr2ST5XNpBKO_s98eXBdEbgUAYiUIPPpbCBjolkbNm7VrlA4KAlNZGGLXrETeOQ4h62HsNQqHWSaPNyGnnkWk7797Mbh31TnngwXk-9nXODnEa2gzSu7Wy4Tw50WCDuviL0-Tl7na1uE8fn5YPi_ljKvIcl6mueQEVpToHVuaq0pmQtAbKOKlkjZWMfwMteEW4ZBoKpipaZ4xlhPAyzyCfJleHufGw170KfbN1e7-LK5uMlBVmEa8jdX2ghHcheKWbzpsW_NAQ3IwmN9HkZjQ5oukBfTdWDf9yzfN89cv_ALJ1guk</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Ghasri, Mahsa</creator><creator>Jahandideh, Arash</creator><creator>Kabiri, Kourosh</creator><creator>Bouhendi, Hossein</creator><creator>Zohuriaan‐Mehr, Mohammad J.</creator><creator>Moini, Nasrin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9318-6742</orcidid></search><sort><creationdate>201902</creationdate><title>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</title><author>Ghasri, Mahsa ; Jahandideh, Arash ; Kabiri, Kourosh ; Bouhendi, Hossein ; Zohuriaan‐Mehr, Mohammad J. ; Moini, Nasrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Calcium chloride</topic><topic>Chemical synthesis</topic><topic>crosslinker, lactic acid</topic><topic>Crosslinking</topic><topic>Elasticity</topic><topic>Fourier transforms</topic><topic>Glycerol</topic><topic>Hydrogels</topic><topic>Lactic acid</topic><topic>Loss modulus</topic><topic>Oligomers</topic><topic>Reflectance</topic><topic>Rheometry</topic><topic>Rubber</topic><topic>Scanning electron microscopy</topic><topic>Sensitivity analysis</topic><topic>Sodium chloride</topic><topic>star shaped</topic><topic>Storage modulus</topic><topic>superabsorbent</topic><topic>Superabsorbent polymers</topic><topic>surface crosslinking</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasri, Mahsa</creatorcontrib><creatorcontrib>Jahandideh, Arash</creatorcontrib><creatorcontrib>Kabiri, Kourosh</creatorcontrib><creatorcontrib>Bouhendi, Hossein</creatorcontrib><creatorcontrib>Zohuriaan‐Mehr, Mohammad J.</creatorcontrib><creatorcontrib>Moini, Nasrin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasri, Mahsa</au><au>Jahandideh, Arash</au><au>Kabiri, Kourosh</au><au>Bouhendi, Hossein</au><au>Zohuriaan‐Mehr, Mohammad J.</au><au>Moini, Nasrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2019-02</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>390</spage><epage>399</epage><pages>390-399</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9318-6742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2019-02, Vol.30 (2), p.390-399
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_journals_2168074929
source Wiley Online Library Journals Frontfile Complete
subjects Architecture
Calcium chloride
Chemical synthesis
crosslinker, lactic acid
Crosslinking
Elasticity
Fourier transforms
Glycerol
Hydrogels
Lactic acid
Loss modulus
Oligomers
Reflectance
Rheometry
Rubber
Scanning electron microscopy
Sensitivity analysis
Sodium chloride
star shaped
Storage modulus
superabsorbent
Superabsorbent polymers
surface crosslinking
Surface treatment
title Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycerol%E2%80%90lactic%20acid%20star%E2%80%90shaped%20oligomers%20as%20efficient%20biobased%20surface%20modifiers%20for%20improving%20superabsorbent%20polymer%20hydrogels&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Ghasri,%20Mahsa&rft.date=2019-02&rft.volume=30&rft.issue=2&rft.spage=390&rft.epage=399&rft.pages=390-399&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4476&rft_dat=%3Cproquest_cross%3E2168074929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168074929&rft_id=info:pmid/&rfr_iscdi=true