Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels
The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength....
Gespeichert in:
Veröffentlicht in: | Polymers for advanced technologies 2019-02, Vol.30 (2), p.390-399 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 2 |
container_start_page | 390 |
container_title | Polymers for advanced technologies |
container_volume | 30 |
creator | Ghasri, Mahsa Jahandideh, Arash Kabiri, Kourosh Bouhendi, Hossein Zohuriaan‐Mehr, Mohammad J. Moini, Nasrin |
description | The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2). |
doi_str_mv | 10.1002/pat.4476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2168074929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168074929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhiMEEqUg8QiWWFhS7MSJk7GqoCAhwVDm6PjWunLqYKegbCzsPCNPgkNZmc7R-b9z-5PkkuAZwTi76aCfUcrKo2RCcF2npKjI8ZjTLGWEstPkLIQtxlGr2ST5XNpBKO_s98eXBdEbgUAYiUIPPpbCBjolkbNm7VrlA4KAlNZGGLXrETeOQ4h62HsNQqHWSaPNyGnnkWk7797Mbh31TnngwXk-9nXODnEa2gzSu7Wy4Tw50WCDuviL0-Tl7na1uE8fn5YPi_ljKvIcl6mueQEVpToHVuaq0pmQtAbKOKlkjZWMfwMteEW4ZBoKpipaZ4xlhPAyzyCfJleHufGw170KfbN1e7-LK5uMlBVmEa8jdX2ghHcheKWbzpsW_NAQ3IwmN9HkZjQ5oukBfTdWDf9yzfN89cv_ALJ1guk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168074929</pqid></control><display><type>article</type><title>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghasri, Mahsa ; Jahandideh, Arash ; Kabiri, Kourosh ; Bouhendi, Hossein ; Zohuriaan‐Mehr, Mohammad J. ; Moini, Nasrin</creator><creatorcontrib>Ghasri, Mahsa ; Jahandideh, Arash ; Kabiri, Kourosh ; Bouhendi, Hossein ; Zohuriaan‐Mehr, Mohammad J. ; Moini, Nasrin</creatorcontrib><description>The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4476</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Architecture ; Calcium chloride ; Chemical synthesis ; crosslinker, lactic acid ; Crosslinking ; Elasticity ; Fourier transforms ; Glycerol ; Hydrogels ; Lactic acid ; Loss modulus ; Oligomers ; Reflectance ; Rheometry ; Rubber ; Scanning electron microscopy ; Sensitivity analysis ; Sodium chloride ; star shaped ; Storage modulus ; superabsorbent ; Superabsorbent polymers ; surface crosslinking ; Surface treatment</subject><ispartof>Polymers for advanced technologies, 2019-02, Vol.30 (2), p.390-399</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</citedby><cites>FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</cites><orcidid>0000-0002-9318-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.4476$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.4476$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ghasri, Mahsa</creatorcontrib><creatorcontrib>Jahandideh, Arash</creatorcontrib><creatorcontrib>Kabiri, Kourosh</creatorcontrib><creatorcontrib>Bouhendi, Hossein</creatorcontrib><creatorcontrib>Zohuriaan‐Mehr, Mohammad J.</creatorcontrib><creatorcontrib>Moini, Nasrin</creatorcontrib><title>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</title><title>Polymers for advanced technologies</title><description>The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).</description><subject>Architecture</subject><subject>Calcium chloride</subject><subject>Chemical synthesis</subject><subject>crosslinker, lactic acid</subject><subject>Crosslinking</subject><subject>Elasticity</subject><subject>Fourier transforms</subject><subject>Glycerol</subject><subject>Hydrogels</subject><subject>Lactic acid</subject><subject>Loss modulus</subject><subject>Oligomers</subject><subject>Reflectance</subject><subject>Rheometry</subject><subject>Rubber</subject><subject>Scanning electron microscopy</subject><subject>Sensitivity analysis</subject><subject>Sodium chloride</subject><subject>star shaped</subject><subject>Storage modulus</subject><subject>superabsorbent</subject><subject>Superabsorbent polymers</subject><subject>surface crosslinking</subject><subject>Surface treatment</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhiMEEqUg8QiWWFhS7MSJk7GqoCAhwVDm6PjWunLqYKegbCzsPCNPgkNZmc7R-b9z-5PkkuAZwTi76aCfUcrKo2RCcF2npKjI8ZjTLGWEstPkLIQtxlGr2ST5XNpBKO_s98eXBdEbgUAYiUIPPpbCBjolkbNm7VrlA4KAlNZGGLXrETeOQ4h62HsNQqHWSaPNyGnnkWk7797Mbh31TnngwXk-9nXODnEa2gzSu7Wy4Tw50WCDuviL0-Tl7na1uE8fn5YPi_ljKvIcl6mueQEVpToHVuaq0pmQtAbKOKlkjZWMfwMteEW4ZBoKpipaZ4xlhPAyzyCfJleHufGw170KfbN1e7-LK5uMlBVmEa8jdX2ghHcheKWbzpsW_NAQ3IwmN9HkZjQ5oukBfTdWDf9yzfN89cv_ALJ1guk</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Ghasri, Mahsa</creator><creator>Jahandideh, Arash</creator><creator>Kabiri, Kourosh</creator><creator>Bouhendi, Hossein</creator><creator>Zohuriaan‐Mehr, Mohammad J.</creator><creator>Moini, Nasrin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9318-6742</orcidid></search><sort><creationdate>201902</creationdate><title>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</title><author>Ghasri, Mahsa ; Jahandideh, Arash ; Kabiri, Kourosh ; Bouhendi, Hossein ; Zohuriaan‐Mehr, Mohammad J. ; Moini, Nasrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3306-f9b5a844f3a763e8f2cd49a47b18d90ed476a45b81bd7fa57e849277211b632a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Calcium chloride</topic><topic>Chemical synthesis</topic><topic>crosslinker, lactic acid</topic><topic>Crosslinking</topic><topic>Elasticity</topic><topic>Fourier transforms</topic><topic>Glycerol</topic><topic>Hydrogels</topic><topic>Lactic acid</topic><topic>Loss modulus</topic><topic>Oligomers</topic><topic>Reflectance</topic><topic>Rheometry</topic><topic>Rubber</topic><topic>Scanning electron microscopy</topic><topic>Sensitivity analysis</topic><topic>Sodium chloride</topic><topic>star shaped</topic><topic>Storage modulus</topic><topic>superabsorbent</topic><topic>Superabsorbent polymers</topic><topic>surface crosslinking</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasri, Mahsa</creatorcontrib><creatorcontrib>Jahandideh, Arash</creatorcontrib><creatorcontrib>Kabiri, Kourosh</creatorcontrib><creatorcontrib>Bouhendi, Hossein</creatorcontrib><creatorcontrib>Zohuriaan‐Mehr, Mohammad J.</creatorcontrib><creatorcontrib>Moini, Nasrin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasri, Mahsa</au><au>Jahandideh, Arash</au><au>Kabiri, Kourosh</au><au>Bouhendi, Hossein</au><au>Zohuriaan‐Mehr, Mohammad J.</au><au>Moini, Nasrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2019-02</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>390</spage><epage>399</epage><pages>390-399</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>The glycerol‐lactic acid‐based star‐shaped modifier (SM) were synthesized and employed for surface modification of hygienic superabsorbent polymer (SAP) hydrogels for the first time. Surface crosslinking was carried out to increase the saline‐absorbency under load (AUL) and the swollen gel strength. The surface treatment process was analyzed employing free absorbency and AUL tests, salt sensitivity, attenuated total reflectance‐Fourier‐transform infrared spectroscopy (ATR‐FTIR), oscillatory rheometry, as well as scanning electron microscopy analysis. The effect of the branched architecture and the contents of SM on the properties of the modified SAPs were studied. The implementation of surface treatment leads to increase up to a 28% in the AUL of the modified SAP. Moreover, the loss modulus was surprisingly increased, while the storage modulus was enhanced (possibly due to the star architecture of oligomers). Mc and crosslink density values have been estimated based on modified rubber elasticity theory. Salt sensitivity factor (f) was calculated; the modified samples showed lower salt sensitivity in NaCl (f = 0.7) and CaCl2 (f = 0.93–0.95) compared with the intact SAP (f = 0.84 for NaCl, and f = 0.95–0.97 for CaCl2).</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9318-6742</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-7147 |
ispartof | Polymers for advanced technologies, 2019-02, Vol.30 (2), p.390-399 |
issn | 1042-7147 1099-1581 |
language | eng |
recordid | cdi_proquest_journals_2168074929 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Architecture Calcium chloride Chemical synthesis crosslinker, lactic acid Crosslinking Elasticity Fourier transforms Glycerol Hydrogels Lactic acid Loss modulus Oligomers Reflectance Rheometry Rubber Scanning electron microscopy Sensitivity analysis Sodium chloride star shaped Storage modulus superabsorbent Superabsorbent polymers surface crosslinking Surface treatment |
title | Glycerol‐lactic acid star‐shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycerol%E2%80%90lactic%20acid%20star%E2%80%90shaped%20oligomers%20as%20efficient%20biobased%20surface%20modifiers%20for%20improving%20superabsorbent%20polymer%20hydrogels&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Ghasri,%20Mahsa&rft.date=2019-02&rft.volume=30&rft.issue=2&rft.spage=390&rft.epage=399&rft.pages=390-399&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4476&rft_dat=%3Cproquest_cross%3E2168074929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168074929&rft_id=info:pmid/&rfr_iscdi=true |