Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin

Predicting snow cover dynamics and relevant streamflow due to snowmelt is a challenging issue in mountainous basins. Spatio-temporal variations of snow extent can be analyzed using probabilistic snow cover maps derived from satellite images within a relatively long period. In this study, Probabilist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Hydrology and Hydromechanics 2019-03, Vol.67 (1), p.82-92
Hauptverfasser: Şorman, A. Arda, Uysal, Gökçen, Şensoy, Aynur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 82
container_title Journal of Hydrology and Hydromechanics
container_volume 67
creator Şorman, A. Arda
Uysal, Gökçen
Şensoy, Aynur
description Predicting snow cover dynamics and relevant streamflow due to snowmelt is a challenging issue in mountainous basins. Spatio-temporal variations of snow extent can be analyzed using probabilistic snow cover maps derived from satellite images within a relatively long period. In this study, Probabilistic Snow Depletion Curves (P-SDCs) and Probabilistic Snow Lines (P-SLs) are acquired from Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-filtered daily snow cover images. Analyses of P-SDCs show a strong correlation with average daily runoff (R2 = 0.90) and temperature (R2 = 0.96). On the other hand, the challenge lies in developing noteworthy methods to use P-SDCs in streamflow estimations. Therefore, the main objective is to explore the feasibility of producing probabilistic runoff forecasts with P-SDC forcing in a snow dominated basin. Upper Euphrates Basin in Turkey has large snow extent and high snowmelt contribution during spring and summer periods. The melting characteristics are defined by P-SDCs using MODIS imagery for 2001-2012. The value of snow probability maps on ensemble runoff predictions is shown with Snowmelt Runoff Model (SRM) during 2013-2015 where the estimated runoff values indicate good consistency (NSE: 0.47-0.93) with forecasts based on the derived P-SDCs. Therefore, the probabilistic approach distinguishes the snow cover characteristics for a region and promotes a useful methodology on the application of probabilistic runoff predictions especially for snow dominated areas.
doi_str_mv 10.2478/johh-2018-0025
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2168017331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a901b45a95eb46be8de3e8c654611df1</doaj_id><sourcerecordid>2168017331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8499646d7b177e1b1545b3be5b5f890a8b0e55488a26c447789f4f9640c11e583</originalsourceid><addsrcrecordid>eNpNUcFKxDAQDaLgunr1HPDcNUmTJj3qUnVhQWFd0FNI2qlt6TY16Sr-va0r4mmGmffevOEhdEnJgnGprhtXVREjVEWEMHGEZoRwFsmUvBz_60_RWQgNIYlgks3Q65N31ti6rcNQ53jTuU-8dB_gsekKnHUBdrYFvBk8mF3ZjttsBO7MULsu4LrDQwV42_cjIdv3lTcDBHxrQt2do5PStAEufuscbe-y5-VDtH68Xy1v1lHOmRgixdM04UkhLZUSqKWCCxtbEFaUKiVGWQJCcKUMS3LOpVRpycuRQnJKQah4jlYH3cKZRvd-NOe_tDO1_hk4_6aNH39rQZuUUMuFSQVYnlhQBcSg8kTwhNKipKPW1UGr9-59D2HQjdv7brSvGU0UoTKOJ9TigMq9C8FD-XeVEj1Foaco9BSFnqKIvwGaTnvd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168017331</pqid></control><display><type>article</type><title>Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Şorman, A. Arda ; Uysal, Gökçen ; Şensoy, Aynur</creator><creatorcontrib>Şorman, A. Arda ; Uysal, Gökçen ; Şensoy, Aynur</creatorcontrib><description>Predicting snow cover dynamics and relevant streamflow due to snowmelt is a challenging issue in mountainous basins. Spatio-temporal variations of snow extent can be analyzed using probabilistic snow cover maps derived from satellite images within a relatively long period. In this study, Probabilistic Snow Depletion Curves (P-SDCs) and Probabilistic Snow Lines (P-SLs) are acquired from Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-filtered daily snow cover images. Analyses of P-SDCs show a strong correlation with average daily runoff (R2 = 0.90) and temperature (R2 = 0.96). On the other hand, the challenge lies in developing noteworthy methods to use P-SDCs in streamflow estimations. Therefore, the main objective is to explore the feasibility of producing probabilistic runoff forecasts with P-SDC forcing in a snow dominated basin. Upper Euphrates Basin in Turkey has large snow extent and high snowmelt contribution during spring and summer periods. The melting characteristics are defined by P-SDCs using MODIS imagery for 2001-2012. The value of snow probability maps on ensemble runoff predictions is shown with Snowmelt Runoff Model (SRM) during 2013-2015 where the estimated runoff values indicate good consistency (NSE: 0.47-0.93) with forecasts based on the derived P-SDCs. Therefore, the probabilistic approach distinguishes the snow cover characteristics for a region and promotes a useful methodology on the application of probabilistic runoff predictions especially for snow dominated areas.</description><identifier>ISSN: 0042-790X</identifier><identifier>EISSN: 0042-790X</identifier><identifier>EISSN: 1338-4333</identifier><identifier>DOI: 10.2478/johh-2018-0025</identifier><language>eng</language><publisher>Bratislava: De Gruyter Poland</publisher><subject>Basins ; Daily precipitation ; Daily runoff ; Depletion ; Dynamics ; ensemble streamflow estimation ; euphrates river basin ; Feasibility studies ; Hydrologic models ; hydrological modeling ; Image acquisition ; Imagery ; Imaging techniques ; MODIS ; Predictions ; probabilistic snow maps ; Probability theory ; Remote sensing ; Runoff ; Satellite imagery ; Satellites ; Snow ; Snow cover ; Snowmelt ; Snowmelt runoff ; Spectroradiometers ; Statistical analysis ; Stream discharge ; Stream flow ; Temporal variations</subject><ispartof>Journal of Hydrology and Hydromechanics, 2019-03, Vol.67 (1), p.82-92</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8499646d7b177e1b1545b3be5b5f890a8b0e55488a26c447789f4f9640c11e583</citedby><cites>FETCH-LOGICAL-c425t-8499646d7b177e1b1545b3be5b5f890a8b0e55488a26c447789f4f9640c11e583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Şorman, A. Arda</creatorcontrib><creatorcontrib>Uysal, Gökçen</creatorcontrib><creatorcontrib>Şensoy, Aynur</creatorcontrib><title>Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin</title><title>Journal of Hydrology and Hydromechanics</title><description>Predicting snow cover dynamics and relevant streamflow due to snowmelt is a challenging issue in mountainous basins. Spatio-temporal variations of snow extent can be analyzed using probabilistic snow cover maps derived from satellite images within a relatively long period. In this study, Probabilistic Snow Depletion Curves (P-SDCs) and Probabilistic Snow Lines (P-SLs) are acquired from Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-filtered daily snow cover images. Analyses of P-SDCs show a strong correlation with average daily runoff (R2 = 0.90) and temperature (R2 = 0.96). On the other hand, the challenge lies in developing noteworthy methods to use P-SDCs in streamflow estimations. Therefore, the main objective is to explore the feasibility of producing probabilistic runoff forecasts with P-SDC forcing in a snow dominated basin. Upper Euphrates Basin in Turkey has large snow extent and high snowmelt contribution during spring and summer periods. The melting characteristics are defined by P-SDCs using MODIS imagery for 2001-2012. The value of snow probability maps on ensemble runoff predictions is shown with Snowmelt Runoff Model (SRM) during 2013-2015 where the estimated runoff values indicate good consistency (NSE: 0.47-0.93) with forecasts based on the derived P-SDCs. Therefore, the probabilistic approach distinguishes the snow cover characteristics for a region and promotes a useful methodology on the application of probabilistic runoff predictions especially for snow dominated areas.</description><subject>Basins</subject><subject>Daily precipitation</subject><subject>Daily runoff</subject><subject>Depletion</subject><subject>Dynamics</subject><subject>ensemble streamflow estimation</subject><subject>euphrates river basin</subject><subject>Feasibility studies</subject><subject>Hydrologic models</subject><subject>hydrological modeling</subject><subject>Image acquisition</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>MODIS</subject><subject>Predictions</subject><subject>probabilistic snow maps</subject><subject>Probability theory</subject><subject>Remote sensing</subject><subject>Runoff</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snowmelt</subject><subject>Snowmelt runoff</subject><subject>Spectroradiometers</subject><subject>Statistical analysis</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Temporal variations</subject><issn>0042-790X</issn><issn>0042-790X</issn><issn>1338-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKxDAQDaLgunr1HPDcNUmTJj3qUnVhQWFd0FNI2qlt6TY16Sr-va0r4mmGmffevOEhdEnJgnGprhtXVREjVEWEMHGEZoRwFsmUvBz_60_RWQgNIYlgks3Q65N31ti6rcNQ53jTuU-8dB_gsekKnHUBdrYFvBk8mF3ZjttsBO7MULsu4LrDQwV42_cjIdv3lTcDBHxrQt2do5PStAEufuscbe-y5-VDtH68Xy1v1lHOmRgixdM04UkhLZUSqKWCCxtbEFaUKiVGWQJCcKUMS3LOpVRpycuRQnJKQah4jlYH3cKZRvd-NOe_tDO1_hk4_6aNH39rQZuUUMuFSQVYnlhQBcSg8kTwhNKipKPW1UGr9-59D2HQjdv7brSvGU0UoTKOJ9TigMq9C8FD-XeVEj1Foaco9BSFnqKIvwGaTnvd</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Şorman, A. Arda</creator><creator>Uysal, Gökçen</creator><creator>Şensoy, Aynur</creator><general>De Gruyter Poland</general><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20190301</creationdate><title>Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin</title><author>Şorman, A. Arda ; Uysal, Gökçen ; Şensoy, Aynur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8499646d7b177e1b1545b3be5b5f890a8b0e55488a26c447789f4f9640c11e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basins</topic><topic>Daily precipitation</topic><topic>Daily runoff</topic><topic>Depletion</topic><topic>Dynamics</topic><topic>ensemble streamflow estimation</topic><topic>euphrates river basin</topic><topic>Feasibility studies</topic><topic>Hydrologic models</topic><topic>hydrological modeling</topic><topic>Image acquisition</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>MODIS</topic><topic>Predictions</topic><topic>probabilistic snow maps</topic><topic>Probability theory</topic><topic>Remote sensing</topic><topic>Runoff</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snowmelt</topic><topic>Snowmelt runoff</topic><topic>Spectroradiometers</topic><topic>Statistical analysis</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Şorman, A. Arda</creatorcontrib><creatorcontrib>Uysal, Gökçen</creatorcontrib><creatorcontrib>Şensoy, Aynur</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Hydrology and Hydromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Şorman, A. Arda</au><au>Uysal, Gökçen</au><au>Şensoy, Aynur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin</atitle><jtitle>Journal of Hydrology and Hydromechanics</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>67</volume><issue>1</issue><spage>82</spage><epage>92</epage><pages>82-92</pages><issn>0042-790X</issn><eissn>0042-790X</eissn><eissn>1338-4333</eissn><abstract>Predicting snow cover dynamics and relevant streamflow due to snowmelt is a challenging issue in mountainous basins. Spatio-temporal variations of snow extent can be analyzed using probabilistic snow cover maps derived from satellite images within a relatively long period. In this study, Probabilistic Snow Depletion Curves (P-SDCs) and Probabilistic Snow Lines (P-SLs) are acquired from Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-filtered daily snow cover images. Analyses of P-SDCs show a strong correlation with average daily runoff (R2 = 0.90) and temperature (R2 = 0.96). On the other hand, the challenge lies in developing noteworthy methods to use P-SDCs in streamflow estimations. Therefore, the main objective is to explore the feasibility of producing probabilistic runoff forecasts with P-SDC forcing in a snow dominated basin. Upper Euphrates Basin in Turkey has large snow extent and high snowmelt contribution during spring and summer periods. The melting characteristics are defined by P-SDCs using MODIS imagery for 2001-2012. The value of snow probability maps on ensemble runoff predictions is shown with Snowmelt Runoff Model (SRM) during 2013-2015 where the estimated runoff values indicate good consistency (NSE: 0.47-0.93) with forecasts based on the derived P-SDCs. Therefore, the probabilistic approach distinguishes the snow cover characteristics for a region and promotes a useful methodology on the application of probabilistic runoff predictions especially for snow dominated areas.</abstract><cop>Bratislava</cop><pub>De Gruyter Poland</pub><doi>10.2478/johh-2018-0025</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-790X
ispartof Journal of Hydrology and Hydromechanics, 2019-03, Vol.67 (1), p.82-92
issn 0042-790X
0042-790X
1338-4333
language eng
recordid cdi_proquest_journals_2168017331
source De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Basins
Daily precipitation
Daily runoff
Depletion
Dynamics
ensemble streamflow estimation
euphrates river basin
Feasibility studies
Hydrologic models
hydrological modeling
Image acquisition
Imagery
Imaging techniques
MODIS
Predictions
probabilistic snow maps
Probability theory
Remote sensing
Runoff
Satellite imagery
Satellites
Snow
Snow cover
Snowmelt
Snowmelt runoff
Spectroradiometers
Statistical analysis
Stream discharge
Stream flow
Temporal variations
title Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Snow%20Cover%20and%20Ensemble%20Streamflow%20Estimations%20in%20the%20Upper%20Euphrates%20Basin&rft.jtitle=Journal%20of%20Hydrology%20and%20Hydromechanics&rft.au=%C5%9Eorman,%20A.%20Arda&rft.date=2019-03-01&rft.volume=67&rft.issue=1&rft.spage=82&rft.epage=92&rft.pages=82-92&rft.issn=0042-790X&rft.eissn=0042-790X&rft_id=info:doi/10.2478/johh-2018-0025&rft_dat=%3Cproquest_doaj_%3E2168017331%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168017331&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a901b45a95eb46be8de3e8c654611df1&rfr_iscdi=true