Eshelby force and power for uniform bodies
Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112, 1951 , J Elast 5:321–335, 1975 ) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32, 1967 ) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2019-05, Vol.230 (5), p.1663-1684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1684 |
---|---|
container_issue | 5 |
container_start_page | 1663 |
container_title | Acta mechanica |
container_volume | 230 |
creator | Alhasadi, Mawafag F. Epstein, Marcelo Federico, Salvatore |
description | Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112,
1951
, J Elast 5:321–335,
1975
) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32,
1967
) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the
Eshelby force
. In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the
modified Eshelby stress
, involving the
torsion
of the connection induced by the
material isomorphism
of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133,
1990
). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of
modified Eshelby force
. Moreover, we show that Eshelby’s variational approach (
1975
) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call
Eshelby power
is the temporal analogue of the Eshelby force, and we obtain a differential identity for the
modified Eshelby power
. This leads to concluding that the driving force for the process of growth–remodelling is the
Mandel stress
. Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the
mechanical power
expended in a uniform body to make the inhomogeneities evolve. |
doi_str_mv | 10.1007/s00707-018-2353-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2168002843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597858682</galeid><sourcerecordid>A597858682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_wNuCNyE138keS6kfUPCi55Bks3VLu6lJF-m_d8oKngQJZJjwPJnhReiWkhklRD8UuIjGhBrMuORYnaEJVbTGqub6HE0IIRTLWpNLdFXKBjqmBZ2g-2X5iFt_rNqUQ6xc31T79BXzqa-GvoOyq3xquliu0UXrtiXe_NQpen9cvi2e8er16WUxX-HAa3HAXnImpQs-NNwEWXOYFQ11pDZOiag0ZSp4qQUADaewRe2NkV5LwRuhAp-iu_HffU6fQywHu0lD7mGkZVQZQpgRHKjZSK3dNtqub9MhuwCnibsupD62HbzPgVdaayr_K0BGRhplGAh0FEJOpeTY2n3udi4fLSX2FLodQ7cQuj2FbhU4bHQKsP065t_d_5a-AerFgQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168002843</pqid></control><display><type>article</type><title>Eshelby force and power for uniform bodies</title><source>Springer Nature - Complete Springer Journals</source><creator>Alhasadi, Mawafag F. ; Epstein, Marcelo ; Federico, Salvatore</creator><creatorcontrib>Alhasadi, Mawafag F. ; Epstein, Marcelo ; Federico, Salvatore</creatorcontrib><description>Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112,
1951
, J Elast 5:321–335,
1975
) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32,
1967
) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the
Eshelby force
. In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the
modified Eshelby stress
, involving the
torsion
of the connection induced by the
material isomorphism
of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133,
1990
). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of
modified Eshelby force
. Moreover, we show that Eshelby’s variational approach (
1975
) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call
Eshelby power
is the temporal analogue of the Eshelby force, and we obtain a differential identity for the
modified Eshelby power
. This leads to concluding that the driving force for the process of growth–remodelling is the
Mandel stress
. Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the
mechanical power
expended in a uniform body to make the inhomogeneities evolve.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-018-2353-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Arches ; Classical and Continuum Physics ; Control ; Divergence ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Isomorphism ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-05, Vol.230 (5), p.1663-1684</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</citedby><cites>FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</cites><orcidid>0000-0003-0866-1121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-018-2353-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-018-2353-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alhasadi, Mawafag F.</creatorcontrib><creatorcontrib>Epstein, Marcelo</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><title>Eshelby force and power for uniform bodies</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112,
1951
, J Elast 5:321–335,
1975
) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32,
1967
) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the
Eshelby force
. In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the
modified Eshelby stress
, involving the
torsion
of the connection induced by the
material isomorphism
of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133,
1990
). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of
modified Eshelby force
. Moreover, we show that Eshelby’s variational approach (
1975
) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call
Eshelby power
is the temporal analogue of the Eshelby force, and we obtain a differential identity for the
modified Eshelby power
. This leads to concluding that the driving force for the process of growth–remodelling is the
Mandel stress
. Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the
mechanical power
expended in a uniform body to make the inhomogeneities evolve.</description><subject>Arches</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Divergence</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Isomorphism</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1LAzEQhoMoWKs_wNuCNyE138keS6kfUPCi55Bks3VLu6lJF-m_d8oKngQJZJjwPJnhReiWkhklRD8UuIjGhBrMuORYnaEJVbTGqub6HE0IIRTLWpNLdFXKBjqmBZ2g-2X5iFt_rNqUQ6xc31T79BXzqa-GvoOyq3xquliu0UXrtiXe_NQpen9cvi2e8er16WUxX-HAa3HAXnImpQs-NNwEWXOYFQ11pDZOiag0ZSp4qQUADaewRe2NkV5LwRuhAp-iu_HffU6fQywHu0lD7mGkZVQZQpgRHKjZSK3dNtqub9MhuwCnibsupD62HbzPgVdaayr_K0BGRhplGAh0FEJOpeTY2n3udi4fLSX2FLodQ7cQuj2FbhU4bHQKsP065t_d_5a-AerFgQY</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Alhasadi, Mawafag F.</creator><creator>Epstein, Marcelo</creator><creator>Federico, Salvatore</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0866-1121</orcidid></search><sort><creationdate>20190501</creationdate><title>Eshelby force and power for uniform bodies</title><author>Alhasadi, Mawafag F. ; Epstein, Marcelo ; Federico, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arches</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Divergence</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Isomorphism</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhasadi, Mawafag F.</creatorcontrib><creatorcontrib>Epstein, Marcelo</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhasadi, Mawafag F.</au><au>Epstein, Marcelo</au><au>Federico, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eshelby force and power for uniform bodies</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>230</volume><issue>5</issue><spage>1663</spage><epage>1684</epage><pages>1663-1684</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112,
1951
, J Elast 5:321–335,
1975
) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32,
1967
) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the
Eshelby force
. In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the
modified Eshelby stress
, involving the
torsion
of the connection induced by the
material isomorphism
of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133,
1990
). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of
modified Eshelby force
. Moreover, we show that Eshelby’s variational approach (
1975
) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call
Eshelby power
is the temporal analogue of the Eshelby force, and we obtain a differential identity for the
modified Eshelby power
. This leads to concluding that the driving force for the process of growth–remodelling is the
Mandel stress
. Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the
mechanical power
expended in a uniform body to make the inhomogeneities evolve.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-018-2353-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0866-1121</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2019-05, Vol.230 (5), p.1663-1684 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2168002843 |
source | Springer Nature - Complete Springer Journals |
subjects | Arches Classical and Continuum Physics Control Divergence Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Isomorphism Original Paper Solid Mechanics Theoretical and Applied Mechanics Vibration |
title | Eshelby force and power for uniform bodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eshelby%20force%20and%20power%20for%20uniform%20bodies&rft.jtitle=Acta%20mechanica&rft.au=Alhasadi,%20Mawafag%20F.&rft.date=2019-05-01&rft.volume=230&rft.issue=5&rft.spage=1663&rft.epage=1684&rft.pages=1663-1684&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-018-2353-6&rft_dat=%3Cgale_proqu%3EA597858682%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168002843&rft_id=info:pmid/&rft_galeid=A597858682&rfr_iscdi=true |