Eshelby force and power for uniform bodies

Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112, 1951 , J Elast 5:321–335, 1975 ) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32, 1967 ) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2019-05, Vol.230 (5), p.1663-1684
Hauptverfasser: Alhasadi, Mawafag F., Epstein, Marcelo, Federico, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1684
container_issue 5
container_start_page 1663
container_title Acta mechanica
container_volume 230
creator Alhasadi, Mawafag F.
Epstein, Marcelo
Federico, Salvatore
description Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112, 1951 , J Elast 5:321–335, 1975 ) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32, 1967 ) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the Eshelby force . In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the modified Eshelby stress , involving the torsion of the connection induced by the material isomorphism of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133, 1990 ). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of modified Eshelby force . Moreover, we show that Eshelby’s variational approach ( 1975 ) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call Eshelby power is the temporal analogue of the Eshelby force, and we obtain a differential identity for the modified Eshelby power . This leads to concluding that the driving force for the process of growth–remodelling is the Mandel stress . Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the mechanical power expended in a uniform body to make the inhomogeneities evolve.
doi_str_mv 10.1007/s00707-018-2353-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2168002843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597858682</galeid><sourcerecordid>A597858682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_wNuCNyE138keS6kfUPCi55Bks3VLu6lJF-m_d8oKngQJZJjwPJnhReiWkhklRD8UuIjGhBrMuORYnaEJVbTGqub6HE0IIRTLWpNLdFXKBjqmBZ2g-2X5iFt_rNqUQ6xc31T79BXzqa-GvoOyq3xquliu0UXrtiXe_NQpen9cvi2e8er16WUxX-HAa3HAXnImpQs-NNwEWXOYFQ11pDZOiag0ZSp4qQUADaewRe2NkV5LwRuhAp-iu_HffU6fQywHu0lD7mGkZVQZQpgRHKjZSK3dNtqub9MhuwCnibsupD62HbzPgVdaayr_K0BGRhplGAh0FEJOpeTY2n3udi4fLSX2FLodQ7cQuj2FbhU4bHQKsP065t_d_5a-AerFgQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168002843</pqid></control><display><type>article</type><title>Eshelby force and power for uniform bodies</title><source>Springer Nature - Complete Springer Journals</source><creator>Alhasadi, Mawafag F. ; Epstein, Marcelo ; Federico, Salvatore</creator><creatorcontrib>Alhasadi, Mawafag F. ; Epstein, Marcelo ; Federico, Salvatore</creatorcontrib><description>Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112, 1951 , J Elast 5:321–335, 1975 ) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32, 1967 ) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the Eshelby force . In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the modified Eshelby stress , involving the torsion of the connection induced by the material isomorphism of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133, 1990 ). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of modified Eshelby force . Moreover, we show that Eshelby’s variational approach ( 1975 ) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call Eshelby power is the temporal analogue of the Eshelby force, and we obtain a differential identity for the modified Eshelby power . This leads to concluding that the driving force for the process of growth–remodelling is the Mandel stress . Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the mechanical power expended in a uniform body to make the inhomogeneities evolve.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-018-2353-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Arches ; Classical and Continuum Physics ; Control ; Divergence ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Isomorphism ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-05, Vol.230 (5), p.1663-1684</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</citedby><cites>FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</cites><orcidid>0000-0003-0866-1121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-018-2353-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-018-2353-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alhasadi, Mawafag F.</creatorcontrib><creatorcontrib>Epstein, Marcelo</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><title>Eshelby force and power for uniform bodies</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112, 1951 , J Elast 5:321–335, 1975 ) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32, 1967 ) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the Eshelby force . In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the modified Eshelby stress , involving the torsion of the connection induced by the material isomorphism of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133, 1990 ). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of modified Eshelby force . Moreover, we show that Eshelby’s variational approach ( 1975 ) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call Eshelby power is the temporal analogue of the Eshelby force, and we obtain a differential identity for the modified Eshelby power . This leads to concluding that the driving force for the process of growth–remodelling is the Mandel stress . Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the mechanical power expended in a uniform body to make the inhomogeneities evolve.</description><subject>Arches</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Divergence</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Isomorphism</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1LAzEQhoMoWKs_wNuCNyE138keS6kfUPCi55Bks3VLu6lJF-m_d8oKngQJZJjwPJnhReiWkhklRD8UuIjGhBrMuORYnaEJVbTGqub6HE0IIRTLWpNLdFXKBjqmBZ2g-2X5iFt_rNqUQ6xc31T79BXzqa-GvoOyq3xquliu0UXrtiXe_NQpen9cvi2e8er16WUxX-HAa3HAXnImpQs-NNwEWXOYFQ11pDZOiag0ZSp4qQUADaewRe2NkV5LwRuhAp-iu_HffU6fQywHu0lD7mGkZVQZQpgRHKjZSK3dNtqub9MhuwCnibsupD62HbzPgVdaayr_K0BGRhplGAh0FEJOpeTY2n3udi4fLSX2FLodQ7cQuj2FbhU4bHQKsP065t_d_5a-AerFgQY</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Alhasadi, Mawafag F.</creator><creator>Epstein, Marcelo</creator><creator>Federico, Salvatore</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0866-1121</orcidid></search><sort><creationdate>20190501</creationdate><title>Eshelby force and power for uniform bodies</title><author>Alhasadi, Mawafag F. ; Epstein, Marcelo ; Federico, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-b53255acbcd38c593001e81a098a64e67126cb574bcdd317419b885b7543d46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arches</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Divergence</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Isomorphism</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhasadi, Mawafag F.</creatorcontrib><creatorcontrib>Epstein, Marcelo</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhasadi, Mawafag F.</au><au>Epstein, Marcelo</au><au>Federico, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eshelby force and power for uniform bodies</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>230</volume><issue>5</issue><spage>1663</spage><epage>1684</epage><pages>1663-1684</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Inspired by the seminal works of Eshelby (Philos Trans R Soc A 244A:87–112, 1951 , J Elast 5:321–335, 1975 ) on configurational forces and of Noll (Arch Ration Mech Anal 27:1–32, 1967 ) on material uniformity, we study a thermoelastic continuum undergoing volumetric growth and in a dynamical setting, in which we call the divergence of the Eshelby stress the Eshelby force . In the classical statical case, the Eshelby force coincides with the negative of the configurational force. We obtain a differential identity for the modified Eshelby stress , involving the torsion of the connection induced by the material isomorphism of a uniform body, which includes, as a particular case, that found by Epstein and Maugin (Acta Mech 83:127–133, 1990 ). In this identity, the divergence of the modified Eshelby stress with respect to this connection of the material isomorphism takes the name of modified Eshelby force . Moreover, we show that Eshelby’s variational approach ( 1975 ) can be used to formulate not only the balance of material momentum, but also the balance of energy. In this case, we find that what we call Eshelby power is the temporal analogue of the Eshelby force, and we obtain a differential identity for the modified Eshelby power . This leads to concluding that the driving force for the process of growth–remodelling is the Mandel stress . Eventually, we find that the relation between the differential identities for the modified Eshelby force and modified Eshelby power represents the mechanical power expended in a uniform body to make the inhomogeneities evolve.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-018-2353-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0866-1121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2019-05, Vol.230 (5), p.1663-1684
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2168002843
source Springer Nature - Complete Springer Journals
subjects Arches
Classical and Continuum Physics
Control
Divergence
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Isomorphism
Original Paper
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title Eshelby force and power for uniform bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eshelby%20force%20and%20power%20for%20uniform%20bodies&rft.jtitle=Acta%20mechanica&rft.au=Alhasadi,%20Mawafag%20F.&rft.date=2019-05-01&rft.volume=230&rft.issue=5&rft.spage=1663&rft.epage=1684&rft.pages=1663-1684&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-018-2353-6&rft_dat=%3Cgale_proqu%3EA597858682%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168002843&rft_id=info:pmid/&rft_galeid=A597858682&rfr_iscdi=true