Optimization of Hydroxyapatite Synthesis and Microplasma Spraying of Porous Coatings Onto Titanium Implants
The paper presents the main results of development and optimization of the synthesis of hydroxyapatite and the application of the micro-plasma spraying technique for biocompatible coatings. The hydroxyapatite synthesis was optimized using the mathematical modelling method. Synthesized hydroxyapatite...
Gespeichert in:
Veröffentlicht in: | Advances in materials science 2018-09, Vol.18 (3), p.79-94 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 3 |
container_start_page | 79 |
container_title | Advances in materials science |
container_volume | 18 |
creator | Alontseva, D. L. Abilev, M. B. Zhilkashinova, A. M. Voinarovych, S. G. Kyslytsia, O. N. Ghassemieh, E. Russakova, A. Łatka, L. |
description | The paper presents the main results of development and optimization of the synthesis of hydroxyapatite and the application of the micro-plasma spraying technique for biocompatible coatings. The hydroxyapatite synthesis was optimized using the mathematical modelling method. Synthesized hydroxyapatite was studied by IR spectrometry and X-ray diffraction analysis for assessment of the compatibility of the chemical and phase composition to the bone tissue. The Ca/P ratio of the obtained hydroxyapatite was 1.65, which is close to that of bone tissue (1.67). To increase the adhesion strength of the HA coating to the surface of the titanium implant, it was suggested to apply a titanium sublayer to the implant surface. Microplasma spraying (MPS) of biocompatible coatings from titanium wires and synthesized HA powders onto substrates made of medical titanium alloy has been carried out. Microplasmatron MPN-004 is used to obtain the two-layer coatings for titanium implants. The two layer coating includes a sub-layer of a porous titanium coating with a thickness in range from 200 up to 300 μm and the porosity level of about 30%, and an upper layer of HA about 100 μm thick with 95% level of HA phases and 93% level of crystallinity. The pore size varies from 20 to 100 μm in both coatings. The paper describes the technology and modes of microplasma deposition of two-layer coatings, including the mode of gas-abrasive treatment of the surface of implants made of titanium alloy before spraying. The synthesized HA powder and the Ti/HA coatings were investigated by optical microscopy and scanning electron microscopy with the energy dispersion analysis and the X-ray diffraction analysis. |
doi_str_mv | 10.1515/adms-2017-0043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167932236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167932236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-657a098d8fcf423c2d6f5c6f34e5cd6f82e9487bf631ae27c7d371f6efd8febe3</originalsourceid><addsrcrecordid>eNptkN1LwzAUxYMoqNNXnwM-V_PRJi0-yVA3mEzYfA5Zm8zomtQkRetfb8oEffDpHi7ndy73AHCB0RUucHEtmzZkBGGeIZTTA3BCUEmznFfV4R99DE5DeEWIUcLpCXhbdtG05ktG4yx0Gs6GxrvPQXZpExVcDTa-qGAClLaBj6b2rtvJ0Eq46rwcjN2O0JPzrg9w6hJktwEubXRwbaK0pm_hvE2IjeEMHGm5C-r8Z07A8_3dejrLFsuH-fR2kdWkrGLGCi5RVTalrnVOaE0apouaaZqrok66JKrKS77RjGKpCK95QznWTOmEqI2iE3C5z-28e-9ViOLV9d6mk4JgxitKCGXJdbV3pZdC8EqLzptW-kFgJMZCxVioGAsVY6EJuNkDH3IXlW_U1vdDEr_p_4O4pOnmN8IkgBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167932236</pqid></control><display><type>article</type><title>Optimization of Hydroxyapatite Synthesis and Microplasma Spraying of Porous Coatings Onto Titanium Implants</title><source>De Gruyter Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alontseva, D. L. ; Abilev, M. B. ; Zhilkashinova, A. M. ; Voinarovych, S. G. ; Kyslytsia, O. N. ; Ghassemieh, E. ; Russakova, A. ; Łatka, L.</creator><creatorcontrib>Alontseva, D. L. ; Abilev, M. B. ; Zhilkashinova, A. M. ; Voinarovych, S. G. ; Kyslytsia, O. N. ; Ghassemieh, E. ; Russakova, A. ; Łatka, L.</creatorcontrib><description>The paper presents the main results of development and optimization of the synthesis of hydroxyapatite and the application of the micro-plasma spraying technique for biocompatible coatings. The hydroxyapatite synthesis was optimized using the mathematical modelling method. Synthesized hydroxyapatite was studied by IR spectrometry and X-ray diffraction analysis for assessment of the compatibility of the chemical and phase composition to the bone tissue. The Ca/P ratio of the obtained hydroxyapatite was 1.65, which is close to that of bone tissue (1.67). To increase the adhesion strength of the HA coating to the surface of the titanium implant, it was suggested to apply a titanium sublayer to the implant surface. Microplasma spraying (MPS) of biocompatible coatings from titanium wires and synthesized HA powders onto substrates made of medical titanium alloy has been carried out. Microplasmatron MPN-004 is used to obtain the two-layer coatings for titanium implants. The two layer coating includes a sub-layer of a porous titanium coating with a thickness in range from 200 up to 300 μm and the porosity level of about 30%, and an upper layer of HA about 100 μm thick with 95% level of HA phases and 93% level of crystallinity. The pore size varies from 20 to 100 μm in both coatings. The paper describes the technology and modes of microplasma deposition of two-layer coatings, including the mode of gas-abrasive treatment of the surface of implants made of titanium alloy before spraying. The synthesized HA powder and the Ti/HA coatings were investigated by optical microscopy and scanning electron microscopy with the energy dispersion analysis and the X-ray diffraction analysis.</description><identifier>ISSN: 2083-4799</identifier><identifier>ISSN: 1730-2439</identifier><identifier>EISSN: 2083-4799</identifier><identifier>DOI: 10.1515/adms-2017-0043</identifier><language>eng</language><publisher>Gdansk: Sciendo</publisher><subject>Abrasives ; Adhesive strength ; Biocompatibility ; Biomedical materials ; Bones ; Chemical composition ; Hydroxyapatite ; hydroxyapatite (HA) ; Infrared radiation ; microplasma spraying (MPS) ; Microplasmas ; Microscopy ; Optical microscopy ; Optimization ; Organic chemistry ; Phase composition ; Pore size ; Porosity ; porous biocompatible coating ; Powder spraying ; Protective coatings ; Scanning electron microscopy ; Substrates ; Surgical implants ; Synthesis ; titanium ; Titanium alloys ; Titanium base alloys ; Transplants & implants ; X-ray diffraction</subject><ispartof>Advances in materials science, 2018-09, Vol.18 (3), p.79-94</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-657a098d8fcf423c2d6f5c6f34e5cd6f82e9487bf631ae27c7d371f6efd8febe3</citedby><cites>FETCH-LOGICAL-c289t-657a098d8fcf423c2d6f5c6f34e5cd6f82e9487bf631ae27c7d371f6efd8febe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.1515/adms-2017-0043$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.1515/adms-2017-0043$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,75907,75908</link.rule.ids></links><search><creatorcontrib>Alontseva, D. L.</creatorcontrib><creatorcontrib>Abilev, M. B.</creatorcontrib><creatorcontrib>Zhilkashinova, A. M.</creatorcontrib><creatorcontrib>Voinarovych, S. G.</creatorcontrib><creatorcontrib>Kyslytsia, O. N.</creatorcontrib><creatorcontrib>Ghassemieh, E.</creatorcontrib><creatorcontrib>Russakova, A.</creatorcontrib><creatorcontrib>Łatka, L.</creatorcontrib><title>Optimization of Hydroxyapatite Synthesis and Microplasma Spraying of Porous Coatings Onto Titanium Implants</title><title>Advances in materials science</title><description>The paper presents the main results of development and optimization of the synthesis of hydroxyapatite and the application of the micro-plasma spraying technique for biocompatible coatings. The hydroxyapatite synthesis was optimized using the mathematical modelling method. Synthesized hydroxyapatite was studied by IR spectrometry and X-ray diffraction analysis for assessment of the compatibility of the chemical and phase composition to the bone tissue. The Ca/P ratio of the obtained hydroxyapatite was 1.65, which is close to that of bone tissue (1.67). To increase the adhesion strength of the HA coating to the surface of the titanium implant, it was suggested to apply a titanium sublayer to the implant surface. Microplasma spraying (MPS) of biocompatible coatings from titanium wires and synthesized HA powders onto substrates made of medical titanium alloy has been carried out. Microplasmatron MPN-004 is used to obtain the two-layer coatings for titanium implants. The two layer coating includes a sub-layer of a porous titanium coating with a thickness in range from 200 up to 300 μm and the porosity level of about 30%, and an upper layer of HA about 100 μm thick with 95% level of HA phases and 93% level of crystallinity. The pore size varies from 20 to 100 μm in both coatings. The paper describes the technology and modes of microplasma deposition of two-layer coatings, including the mode of gas-abrasive treatment of the surface of implants made of titanium alloy before spraying. The synthesized HA powder and the Ti/HA coatings were investigated by optical microscopy and scanning electron microscopy with the energy dispersion analysis and the X-ray diffraction analysis.</description><subject>Abrasives</subject><subject>Adhesive strength</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Chemical composition</subject><subject>Hydroxyapatite</subject><subject>hydroxyapatite (HA)</subject><subject>Infrared radiation</subject><subject>microplasma spraying (MPS)</subject><subject>Microplasmas</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Phase composition</subject><subject>Pore size</subject><subject>Porosity</subject><subject>porous biocompatible coating</subject><subject>Powder spraying</subject><subject>Protective coatings</subject><subject>Scanning electron microscopy</subject><subject>Substrates</subject><subject>Surgical implants</subject><subject>Synthesis</subject><subject>titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transplants & implants</subject><subject>X-ray diffraction</subject><issn>2083-4799</issn><issn>1730-2439</issn><issn>2083-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkN1LwzAUxYMoqNNXnwM-V_PRJi0-yVA3mEzYfA5Zm8zomtQkRetfb8oEffDpHi7ndy73AHCB0RUucHEtmzZkBGGeIZTTA3BCUEmznFfV4R99DE5DeEWIUcLpCXhbdtG05ktG4yx0Gs6GxrvPQXZpExVcDTa-qGAClLaBj6b2rtvJ0Eq46rwcjN2O0JPzrg9w6hJktwEubXRwbaK0pm_hvE2IjeEMHGm5C-r8Z07A8_3dejrLFsuH-fR2kdWkrGLGCi5RVTalrnVOaE0apouaaZqrok66JKrKS77RjGKpCK95QznWTOmEqI2iE3C5z-28e-9ViOLV9d6mk4JgxitKCGXJdbV3pZdC8EqLzptW-kFgJMZCxVioGAsVY6EJuNkDH3IXlW_U1vdDEr_p_4O4pOnmN8IkgBQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Alontseva, D. L.</creator><creator>Abilev, M. B.</creator><creator>Zhilkashinova, A. M.</creator><creator>Voinarovych, S. G.</creator><creator>Kyslytsia, O. N.</creator><creator>Ghassemieh, E.</creator><creator>Russakova, A.</creator><creator>Łatka, L.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180901</creationdate><title>Optimization of Hydroxyapatite Synthesis and Microplasma Spraying of Porous Coatings Onto Titanium Implants</title><author>Alontseva, D. L. ; Abilev, M. B. ; Zhilkashinova, A. M. ; Voinarovych, S. G. ; Kyslytsia, O. N. ; Ghassemieh, E. ; Russakova, A. ; Łatka, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-657a098d8fcf423c2d6f5c6f34e5cd6f82e9487bf631ae27c7d371f6efd8febe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abrasives</topic><topic>Adhesive strength</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Chemical composition</topic><topic>Hydroxyapatite</topic><topic>hydroxyapatite (HA)</topic><topic>Infrared radiation</topic><topic>microplasma spraying (MPS)</topic><topic>Microplasmas</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Phase composition</topic><topic>Pore size</topic><topic>Porosity</topic><topic>porous biocompatible coating</topic><topic>Powder spraying</topic><topic>Protective coatings</topic><topic>Scanning electron microscopy</topic><topic>Substrates</topic><topic>Surgical implants</topic><topic>Synthesis</topic><topic>titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transplants & implants</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alontseva, D. L.</creatorcontrib><creatorcontrib>Abilev, M. B.</creatorcontrib><creatorcontrib>Zhilkashinova, A. M.</creatorcontrib><creatorcontrib>Voinarovych, S. G.</creatorcontrib><creatorcontrib>Kyslytsia, O. N.</creatorcontrib><creatorcontrib>Ghassemieh, E.</creatorcontrib><creatorcontrib>Russakova, A.</creatorcontrib><creatorcontrib>Łatka, L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advances in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alontseva, D. L.</au><au>Abilev, M. B.</au><au>Zhilkashinova, A. M.</au><au>Voinarovych, S. G.</au><au>Kyslytsia, O. N.</au><au>Ghassemieh, E.</au><au>Russakova, A.</au><au>Łatka, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Hydroxyapatite Synthesis and Microplasma Spraying of Porous Coatings Onto Titanium Implants</atitle><jtitle>Advances in materials science</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>79</spage><epage>94</epage><pages>79-94</pages><issn>2083-4799</issn><issn>1730-2439</issn><eissn>2083-4799</eissn><abstract>The paper presents the main results of development and optimization of the synthesis of hydroxyapatite and the application of the micro-plasma spraying technique for biocompatible coatings. The hydroxyapatite synthesis was optimized using the mathematical modelling method. Synthesized hydroxyapatite was studied by IR spectrometry and X-ray diffraction analysis for assessment of the compatibility of the chemical and phase composition to the bone tissue. The Ca/P ratio of the obtained hydroxyapatite was 1.65, which is close to that of bone tissue (1.67). To increase the adhesion strength of the HA coating to the surface of the titanium implant, it was suggested to apply a titanium sublayer to the implant surface. Microplasma spraying (MPS) of biocompatible coatings from titanium wires and synthesized HA powders onto substrates made of medical titanium alloy has been carried out. Microplasmatron MPN-004 is used to obtain the two-layer coatings for titanium implants. The two layer coating includes a sub-layer of a porous titanium coating with a thickness in range from 200 up to 300 μm and the porosity level of about 30%, and an upper layer of HA about 100 μm thick with 95% level of HA phases and 93% level of crystallinity. The pore size varies from 20 to 100 μm in both coatings. The paper describes the technology and modes of microplasma deposition of two-layer coatings, including the mode of gas-abrasive treatment of the surface of implants made of titanium alloy before spraying. The synthesized HA powder and the Ti/HA coatings were investigated by optical microscopy and scanning electron microscopy with the energy dispersion analysis and the X-ray diffraction analysis.</abstract><cop>Gdansk</cop><pub>Sciendo</pub><doi>10.1515/adms-2017-0043</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2083-4799 |
ispartof | Advances in materials science, 2018-09, Vol.18 (3), p.79-94 |
issn | 2083-4799 1730-2439 2083-4799 |
language | eng |
recordid | cdi_proquest_journals_2167932236 |
source | De Gruyter Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abrasives Adhesive strength Biocompatibility Biomedical materials Bones Chemical composition Hydroxyapatite hydroxyapatite (HA) Infrared radiation microplasma spraying (MPS) Microplasmas Microscopy Optical microscopy Optimization Organic chemistry Phase composition Pore size Porosity porous biocompatible coating Powder spraying Protective coatings Scanning electron microscopy Substrates Surgical implants Synthesis titanium Titanium alloys Titanium base alloys Transplants & implants X-ray diffraction |
title | Optimization of Hydroxyapatite Synthesis and Microplasma Spraying of Porous Coatings Onto Titanium Implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Hydroxyapatite%20Synthesis%20and%20Microplasma%20Spraying%20of%20Porous%20Coatings%20Onto%20Titanium%20Implants&rft.jtitle=Advances%20in%20materials%20science&rft.au=Alontseva,%20D.%20L.&rft.date=2018-09-01&rft.volume=18&rft.issue=3&rft.spage=79&rft.epage=94&rft.pages=79-94&rft.issn=2083-4799&rft.eissn=2083-4799&rft_id=info:doi/10.1515/adms-2017-0043&rft_dat=%3Cproquest_cross%3E2167932236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167932236&rft_id=info:pmid/&rfr_iscdi=true |