NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning

We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a particular emphasis on the development of advanced applications of neural machine translation systems, such as interactive-predictive translation protocols and long-term adaptation of the translation system via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Prague bulletin of mathematical linguistics 2018-10, Vol.111 (1), p.113-124
Hauptverfasser: Peris, Álvaro, Casacuberta, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page 113
container_title Prague bulletin of mathematical linguistics
container_volume 111
creator Peris, Álvaro
Casacuberta, Francisco
description We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a particular emphasis on the development of advanced applications of neural machine translation systems, such as interactive-predictive translation protocols and long-term adaptation of the translation system via continuous learning. NMT-Keras is based on an extended version of the popular Keras library, and it runs on Theano and TensorFlow. State-of-the-art neural machine translation models are deployed and used following the high-level framework provided by Keras. Given its high modularity and flexibility, it also has been extended to tackle different problems, such as image and video captioning, sentence classification and visual question answering.
doi_str_mv 10.2478/pralin-2018-0010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167897793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167897793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2143-83f4775e6eac549f62d1827bcfedb2acfc906a33b18b85795fb74478cf6880f63</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM1piDvgjsR0WhCpaKgpdSlfLceySEpxiJ5T-97gECRZuuZPufu_pHgDnGF2SlIurjVd15RKCsEgQwugADLBAaYJSRg7_zMfgJIQ1QkxQhgdg-fS4SB6MV-EaKrg0fgfHtfmsitrARdPUr1ULt1X7EpfjRncBNg5OXRsB3VYfBkYcKlfCuYvuBs6M8q5yq1NwZFUdzNlPH4Ln8d1idJ_M5pPp6HaWaIJTmghqU84zw4zSWZpbRkosCC-0NWVBlLY6R0xRWmBRiIznmS14Gr_VlgmBLKNDcNHrbnzz3pnQynXTeRctJcGMi5zznMYr1F9p34TgjZUbX70pv5MYyX16sk9P7tOT-_QictMjW1XHb0uz8t0uDr_6_6H4uyj9Agyvd1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167897793</pqid></control><display><type>article</type><title>NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peris, Álvaro ; Casacuberta, Francisco</creator><creatorcontrib>Peris, Álvaro ; Casacuberta, Francisco</creatorcontrib><description>We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a particular emphasis on the development of advanced applications of neural machine translation systems, such as interactive-predictive translation protocols and long-term adaptation of the translation system via continuous learning. NMT-Keras is based on an extended version of the popular Keras library, and it runs on Theano and TensorFlow. State-of-the-art neural machine translation models are deployed and used following the high-level framework provided by Keras. Given its high modularity and flexibility, it also has been extended to tackle different problems, such as image and video captioning, sentence classification and visual question answering.</description><identifier>ISSN: 1804-0462</identifier><identifier>ISSN: 0032-6585</identifier><identifier>EISSN: 1804-0462</identifier><identifier>DOI: 10.2478/pralin-2018-0010</identifier><language>eng</language><publisher>Prague: Sciendo</publisher><subject>Computational linguistics ; Deep learning ; Distance learning ; Image classification ; Interactive systems ; Machine learning ; Machine translation ; Modularity ; State of the art ; Video data</subject><ispartof>Prague bulletin of mathematical linguistics, 2018-10, Vol.111 (1), p.113-124</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2143-83f4775e6eac549f62d1827bcfedb2acfc906a33b18b85795fb74478cf6880f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Peris, Álvaro</creatorcontrib><creatorcontrib>Casacuberta, Francisco</creatorcontrib><title>NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning</title><title>Prague bulletin of mathematical linguistics</title><description>We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a particular emphasis on the development of advanced applications of neural machine translation systems, such as interactive-predictive translation protocols and long-term adaptation of the translation system via continuous learning. NMT-Keras is based on an extended version of the popular Keras library, and it runs on Theano and TensorFlow. State-of-the-art neural machine translation models are deployed and used following the high-level framework provided by Keras. Given its high modularity and flexibility, it also has been extended to tackle different problems, such as image and video captioning, sentence classification and visual question answering.</description><subject>Computational linguistics</subject><subject>Deep learning</subject><subject>Distance learning</subject><subject>Image classification</subject><subject>Interactive systems</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Modularity</subject><subject>State of the art</subject><subject>Video data</subject><issn>1804-0462</issn><issn>0032-6585</issn><issn>1804-0462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1PwzAQxS0EEqWwM1piDvgjsR0WhCpaKgpdSlfLceySEpxiJ5T-97gECRZuuZPufu_pHgDnGF2SlIurjVd15RKCsEgQwugADLBAaYJSRg7_zMfgJIQ1QkxQhgdg-fS4SB6MV-EaKrg0fgfHtfmsitrARdPUr1ULt1X7EpfjRncBNg5OXRsB3VYfBkYcKlfCuYvuBs6M8q5yq1NwZFUdzNlPH4Ln8d1idJ_M5pPp6HaWaIJTmghqU84zw4zSWZpbRkosCC-0NWVBlLY6R0xRWmBRiIznmS14Gr_VlgmBLKNDcNHrbnzz3pnQynXTeRctJcGMi5zznMYr1F9p34TgjZUbX70pv5MYyX16sk9P7tOT-_QictMjW1XHb0uz8t0uDr_6_6H4uyj9Agyvd1U</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Peris, Álvaro</creator><creator>Casacuberta, Francisco</creator><general>Sciendo</general><general>Institute of Formal and Applied Linguistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>CPGLG</scope><scope>CRLPW</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LIQON</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181001</creationdate><title>NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning</title><author>Peris, Álvaro ; Casacuberta, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2143-83f4775e6eac549f62d1827bcfedb2acfc906a33b18b85795fb74478cf6880f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational linguistics</topic><topic>Deep learning</topic><topic>Distance learning</topic><topic>Image classification</topic><topic>Interactive systems</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Modularity</topic><topic>State of the art</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peris, Álvaro</creatorcontrib><creatorcontrib>Casacuberta, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>Linguistics Collection</collection><collection>Linguistics Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Prague bulletin of mathematical linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peris, Álvaro</au><au>Casacuberta, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning</atitle><jtitle>Prague bulletin of mathematical linguistics</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>111</volume><issue>1</issue><spage>113</spage><epage>124</epage><pages>113-124</pages><issn>1804-0462</issn><issn>0032-6585</issn><eissn>1804-0462</eissn><abstract>We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a particular emphasis on the development of advanced applications of neural machine translation systems, such as interactive-predictive translation protocols and long-term adaptation of the translation system via continuous learning. NMT-Keras is based on an extended version of the popular Keras library, and it runs on Theano and TensorFlow. State-of-the-art neural machine translation models are deployed and used following the high-level framework provided by Keras. Given its high modularity and flexibility, it also has been extended to tackle different problems, such as image and video captioning, sentence classification and visual question answering.</abstract><cop>Prague</cop><pub>Sciendo</pub><doi>10.2478/pralin-2018-0010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1804-0462
ispartof Prague bulletin of mathematical linguistics, 2018-10, Vol.111 (1), p.113-124
issn 1804-0462
0032-6585
1804-0462
language eng
recordid cdi_proquest_journals_2167897793
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computational linguistics
Deep learning
Distance learning
Image classification
Interactive systems
Machine learning
Machine translation
Modularity
State of the art
Video data
title NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMT-Keras:%20a%20Very%20Flexible%20Toolkit%20with%20a%20Focus%20on%20Interactive%20NMT%20and%20Online%20Learning&rft.jtitle=Prague%20bulletin%20of%20mathematical%20linguistics&rft.au=Peris,%20%C3%81lvaro&rft.date=2018-10-01&rft.volume=111&rft.issue=1&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.issn=1804-0462&rft.eissn=1804-0462&rft_id=info:doi/10.2478/pralin-2018-0010&rft_dat=%3Cproquest_cross%3E2167897793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167897793&rft_id=info:pmid/&rfr_iscdi=true