Open Source Toolkit for Speech to Text Translation
In this paper we introduce an open source toolkit for speech translation. While there already exists a wide variety of open source tools for the essential tasks of a speech translation system, our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We provide a...
Gespeichert in:
Veröffentlicht in: | Prague bulletin of mathematical linguistics 2018-10, Vol.111 (1), p.125-135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | Prague bulletin of mathematical linguistics |
container_volume | 111 |
creator | Zenkel, Thomas Sperber, Matthias Niehues, Jan Müller, Markus Pham, Ngoc-Quan Stüker, Sebastian Waibel, Alex |
description | In this paper we introduce an open source toolkit for speech translation. While there already exists a wide variety of open source tools for the essential tasks of a speech translation system, our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We provide a Docker container with a ready to use pipeline of the following components: a neural speech recognition system, a sentence segmentation system and an attention-based translation system. We provide recipes for training and evaluating models for the task of translating English lectures and TED talks to German. Additionally, we provide pre-trained models for this task. With this toolkit we hope to facilitate the development of speech translation systems and to encourage researchers to improve the overall performance of speech translation systems. |
doi_str_mv | 10.2478/pralin-2018-0011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167894001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167894001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2145-b2383094b2e590ccb511e9c1149c26c5dff7857a4b33dbbe7f3bbec8cd64aeb63</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMLOaIk54K84zoRQxZdUqUPDbNnOBVJCHOxU0H-PS5Bg4Ya7N7z37u4hdE7JJROFuhqC6do-Y4SqjBBKD9CMKiIyIiQ7_IOP0UmMG0Kk4pLOEFsN0OO13wYHuPK-e21H3PiA1wOAe8GjxxV8jrgKpo-dGVvfn6KjxnQRzn7mHD3d3VaLh2y5un9c3Cwzx6jIM8u44qQUlkFeEudsTimUjlJROiZdXjdNofLCCMt5bS0UDU_dKVdLYcBKPkcXk-8Q_PsW4qg36cw-rdSMykKVIv2ZWGRiueBjDNDoIbRvJuw0JXqfjJ6S0ftk9D6ZJLmeJB-mGyHU8By2uwR-_f-TfhfL-Rc9YGwD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167894001</pqid></control><display><type>article</type><title>Open Source Toolkit for Speech to Text Translation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zenkel, Thomas ; Sperber, Matthias ; Niehues, Jan ; Müller, Markus ; Pham, Ngoc-Quan ; Stüker, Sebastian ; Waibel, Alex</creator><creatorcontrib>Zenkel, Thomas ; Sperber, Matthias ; Niehues, Jan ; Müller, Markus ; Pham, Ngoc-Quan ; Stüker, Sebastian ; Waibel, Alex</creatorcontrib><description>In this paper we introduce an open source toolkit for speech translation. While there already exists a wide variety of open source tools for the essential tasks of a speech translation system, our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We provide a Docker container with a ready to use pipeline of the following components: a neural speech recognition system, a sentence segmentation system and an attention-based translation system. We provide recipes for training and evaluating models for the task of translating English lectures and TED talks to German. Additionally, we provide pre-trained models for this task. With this toolkit we hope to facilitate the development of speech translation systems and to encourage researchers to improve the overall performance of speech translation systems.</description><identifier>ISSN: 1804-0462</identifier><identifier>ISSN: 0032-6585</identifier><identifier>EISSN: 1804-0462</identifier><identifier>DOI: 10.2478/pralin-2018-0011</identifier><language>eng</language><publisher>Prague: Sciendo</publisher><subject>English language ; German language ; Open source software ; Segmentation ; Speech recognition ; Text-to-speech ; Translation</subject><ispartof>Prague bulletin of mathematical linguistics, 2018-10, Vol.111 (1), p.125-135</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2145-b2383094b2e590ccb511e9c1149c26c5dff7857a4b33dbbe7f3bbec8cd64aeb63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zenkel, Thomas</creatorcontrib><creatorcontrib>Sperber, Matthias</creatorcontrib><creatorcontrib>Niehues, Jan</creatorcontrib><creatorcontrib>Müller, Markus</creatorcontrib><creatorcontrib>Pham, Ngoc-Quan</creatorcontrib><creatorcontrib>Stüker, Sebastian</creatorcontrib><creatorcontrib>Waibel, Alex</creatorcontrib><title>Open Source Toolkit for Speech to Text Translation</title><title>Prague bulletin of mathematical linguistics</title><description>In this paper we introduce an open source toolkit for speech translation. While there already exists a wide variety of open source tools for the essential tasks of a speech translation system, our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We provide a Docker container with a ready to use pipeline of the following components: a neural speech recognition system, a sentence segmentation system and an attention-based translation system. We provide recipes for training and evaluating models for the task of translating English lectures and TED talks to German. Additionally, we provide pre-trained models for this task. With this toolkit we hope to facilitate the development of speech translation systems and to encourage researchers to improve the overall performance of speech translation systems.</description><subject>English language</subject><subject>German language</subject><subject>Open source software</subject><subject>Segmentation</subject><subject>Speech recognition</subject><subject>Text-to-speech</subject><subject>Translation</subject><issn>1804-0462</issn><issn>0032-6585</issn><issn>1804-0462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UD1PwzAQtRBIlMLOaIk54K84zoRQxZdUqUPDbNnOBVJCHOxU0H-PS5Bg4Ya7N7z37u4hdE7JJROFuhqC6do-Y4SqjBBKD9CMKiIyIiQ7_IOP0UmMG0Kk4pLOEFsN0OO13wYHuPK-e21H3PiA1wOAe8GjxxV8jrgKpo-dGVvfn6KjxnQRzn7mHD3d3VaLh2y5un9c3Cwzx6jIM8u44qQUlkFeEudsTimUjlJROiZdXjdNofLCCMt5bS0UDU_dKVdLYcBKPkcXk-8Q_PsW4qg36cw-rdSMykKVIv2ZWGRiueBjDNDoIbRvJuw0JXqfjJ6S0ftk9D6ZJLmeJB-mGyHU8By2uwR-_f-TfhfL-Rc9YGwD</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zenkel, Thomas</creator><creator>Sperber, Matthias</creator><creator>Niehues, Jan</creator><creator>Müller, Markus</creator><creator>Pham, Ngoc-Quan</creator><creator>Stüker, Sebastian</creator><creator>Waibel, Alex</creator><general>Sciendo</general><general>Institute of Formal and Applied Linguistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>CPGLG</scope><scope>CRLPW</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LIQON</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181001</creationdate><title>Open Source Toolkit for Speech to Text Translation</title><author>Zenkel, Thomas ; Sperber, Matthias ; Niehues, Jan ; Müller, Markus ; Pham, Ngoc-Quan ; Stüker, Sebastian ; Waibel, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2145-b2383094b2e590ccb511e9c1149c26c5dff7857a4b33dbbe7f3bbec8cd64aeb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>English language</topic><topic>German language</topic><topic>Open source software</topic><topic>Segmentation</topic><topic>Speech recognition</topic><topic>Text-to-speech</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zenkel, Thomas</creatorcontrib><creatorcontrib>Sperber, Matthias</creatorcontrib><creatorcontrib>Niehues, Jan</creatorcontrib><creatorcontrib>Müller, Markus</creatorcontrib><creatorcontrib>Pham, Ngoc-Quan</creatorcontrib><creatorcontrib>Stüker, Sebastian</creatorcontrib><creatorcontrib>Waibel, Alex</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>Linguistics Collection</collection><collection>Linguistics Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Prague bulletin of mathematical linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zenkel, Thomas</au><au>Sperber, Matthias</au><au>Niehues, Jan</au><au>Müller, Markus</au><au>Pham, Ngoc-Quan</au><au>Stüker, Sebastian</au><au>Waibel, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Source Toolkit for Speech to Text Translation</atitle><jtitle>Prague bulletin of mathematical linguistics</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>111</volume><issue>1</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>1804-0462</issn><issn>0032-6585</issn><eissn>1804-0462</eissn><abstract>In this paper we introduce an open source toolkit for speech translation. While there already exists a wide variety of open source tools for the essential tasks of a speech translation system, our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We provide a Docker container with a ready to use pipeline of the following components: a neural speech recognition system, a sentence segmentation system and an attention-based translation system. We provide recipes for training and evaluating models for the task of translating English lectures and TED talks to German. Additionally, we provide pre-trained models for this task. With this toolkit we hope to facilitate the development of speech translation systems and to encourage researchers to improve the overall performance of speech translation systems.</abstract><cop>Prague</cop><pub>Sciendo</pub><doi>10.2478/pralin-2018-0011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1804-0462 |
ispartof | Prague bulletin of mathematical linguistics, 2018-10, Vol.111 (1), p.125-135 |
issn | 1804-0462 0032-6585 1804-0462 |
language | eng |
recordid | cdi_proquest_journals_2167894001 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | English language German language Open source software Segmentation Speech recognition Text-to-speech Translation |
title | Open Source Toolkit for Speech to Text Translation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Source%20Toolkit%20for%20Speech%20to%20Text%20Translation&rft.jtitle=Prague%20bulletin%20of%20mathematical%20linguistics&rft.au=Zenkel,%20Thomas&rft.date=2018-10-01&rft.volume=111&rft.issue=1&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=1804-0462&rft.eissn=1804-0462&rft_id=info:doi/10.2478/pralin-2018-0011&rft_dat=%3Cproquest_cross%3E2167894001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167894001&rft_id=info:pmid/&rfr_iscdi=true |