Effect of Isogrid-Type Obstructions on Thermal Stratification in Upper-Stage Rocket Propellant Tanks

Analytical models for propellant thermal stratification are typically based on smooth wall flow correlations. However, many propellant tank walls have a mass-saving isogrid, which alters the boundary layer. This work investigates the boundary-layer behavior over walls with obstruction elements that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2014-09, Vol.51 (5), p.1587-1602
Hauptverfasser: Faure, Joel M, Oliveira, Justin M, Chintalapati, Sunil, Gutierrez, Hector M, Kirk, Daniel R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1602
container_issue 5
container_start_page 1587
container_title Journal of spacecraft and rockets
container_volume 51
creator Faure, Joel M
Oliveira, Justin M
Chintalapati, Sunil
Gutierrez, Hector M
Kirk, Daniel R
description Analytical models for propellant thermal stratification are typically based on smooth wall flow correlations. However, many propellant tank walls have a mass-saving isogrid, which alters the boundary layer. This work investigates the boundary-layer behavior over walls with obstruction elements that are representative of isogrid or internal stiffener rings. The experimental studies reveal that the thickness of the velocity boundary layer over an isogrid wall is more than 200% thicker than a smooth wall at full-scale upper-stage tank Reynolds numbers. For buoyancy-induced free convection flows, the computational-fluid-dynamics models demonstrate that the velocity boundary layer over a wall lined with obstruction elements may be thicker or thinner than the equivalent boundary layer over a smooth wall, whereas the thermal boundary layer is always thicker for the rough wall. A Rayleigh number scaling analysis is presented for a range of fluids, tank and obstruction sizes, heat loads, and acceleration levels. When the results are applied to a full-scale liquid-hydrogen tank with obstruction elements, the stratification layer is 18% thicker, and the stratum fluid is 31% warmer than the corresponding results for the smooth wall tank. The increase is attributable to the augmented heat transfer area and enhanced mixing of fluid due to the obstruction element.
doi_str_mv 10.2514/1.A32699
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2167857640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629363657</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-1b09bddccc5d8b89878a4b00a14f32fbe05070a66440f8040938609d7f3472393</originalsourceid><addsrcrecordid>eNp9kUtLAzEcxIMoWKvgRwiI4GXrP5tsHsdS6gMKFa3nJZtN6vaxWZP00G_vagXFg6c5zI-ZgUHoksAoLwi7JaMxzblSR2hACkozLhQ7RgOAPM8YL-AUncW4AiBccjVA9dQ5axL2Dj9GvwxNnS32ncXzKqawM6nxbcS-xYs3G7Z6g19S0KlxjdGfFm5a_Np1NmQvSS8tfvZmbRN-Cr6zm41uE17odh3P0YnTm2gvvnWIXu-mi8lDNpvfP07Gs0xTxlNGKlBVXRtjilpWUkkhNasANGGO5q6yUIAAzTlj4CQwUFRyULVwlImcKjpEN4fcLvj3nY2p3DbRfC2xfhdLwnNFOeWF6NGrP-jK70LbrytzwoUsBGfwH0X6ZiqYkOKn1gQfY7Cu7EKz1WFfEig_TylJeTilR68PqG60_hX2l_sA13-H5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609374787</pqid></control><display><type>article</type><title>Effect of Isogrid-Type Obstructions on Thermal Stratification in Upper-Stage Rocket Propellant Tanks</title><source>Alma/SFX Local Collection</source><creator>Faure, Joel M ; Oliveira, Justin M ; Chintalapati, Sunil ; Gutierrez, Hector M ; Kirk, Daniel R</creator><creatorcontrib>Faure, Joel M ; Oliveira, Justin M ; Chintalapati, Sunil ; Gutierrez, Hector M ; Kirk, Daniel R</creatorcontrib><description>Analytical models for propellant thermal stratification are typically based on smooth wall flow correlations. However, many propellant tank walls have a mass-saving isogrid, which alters the boundary layer. This work investigates the boundary-layer behavior over walls with obstruction elements that are representative of isogrid or internal stiffener rings. The experimental studies reveal that the thickness of the velocity boundary layer over an isogrid wall is more than 200% thicker than a smooth wall at full-scale upper-stage tank Reynolds numbers. For buoyancy-induced free convection flows, the computational-fluid-dynamics models demonstrate that the velocity boundary layer over a wall lined with obstruction elements may be thicker or thinner than the equivalent boundary layer over a smooth wall, whereas the thermal boundary layer is always thicker for the rough wall. A Rayleigh number scaling analysis is presented for a range of fluids, tank and obstruction sizes, heat loads, and acceleration levels. When the results are applied to a full-scale liquid-hydrogen tank with obstruction elements, the stratification layer is 18% thicker, and the stratum fluid is 31% warmer than the corresponding results for the smooth wall tank. The increase is attributable to the augmented heat transfer area and enhanced mixing of fluid due to the obstruction element.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A32699</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Acceleration ; Aerospace engineering ; Boundary layer ; College professors ; Computational fluid dynamics ; Fluid flow ; Fluids ; Free convection ; Heat ; Obstructions ; Propellant tanks ; Rayleigh number ; Reynolds number ; Rocket propellants ; Rockets ; Stratification ; Tanks ; Thermal boundary layer ; Thermal stratification ; Thickness ; Upper stage rocket engines ; Velocity ; Viscosity ; Wall flow ; Walls</subject><ispartof>Journal of spacecraft and rockets, 2014-09, Vol.51 (5), p.1587-1602</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-6794/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-1b09bddccc5d8b89878a4b00a14f32fbe05070a66440f8040938609d7f3472393</citedby><cites>FETCH-LOGICAL-a346t-1b09bddccc5d8b89878a4b00a14f32fbe05070a66440f8040938609d7f3472393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Faure, Joel M</creatorcontrib><creatorcontrib>Oliveira, Justin M</creatorcontrib><creatorcontrib>Chintalapati, Sunil</creatorcontrib><creatorcontrib>Gutierrez, Hector M</creatorcontrib><creatorcontrib>Kirk, Daniel R</creatorcontrib><title>Effect of Isogrid-Type Obstructions on Thermal Stratification in Upper-Stage Rocket Propellant Tanks</title><title>Journal of spacecraft and rockets</title><description>Analytical models for propellant thermal stratification are typically based on smooth wall flow correlations. However, many propellant tank walls have a mass-saving isogrid, which alters the boundary layer. This work investigates the boundary-layer behavior over walls with obstruction elements that are representative of isogrid or internal stiffener rings. The experimental studies reveal that the thickness of the velocity boundary layer over an isogrid wall is more than 200% thicker than a smooth wall at full-scale upper-stage tank Reynolds numbers. For buoyancy-induced free convection flows, the computational-fluid-dynamics models demonstrate that the velocity boundary layer over a wall lined with obstruction elements may be thicker or thinner than the equivalent boundary layer over a smooth wall, whereas the thermal boundary layer is always thicker for the rough wall. A Rayleigh number scaling analysis is presented for a range of fluids, tank and obstruction sizes, heat loads, and acceleration levels. When the results are applied to a full-scale liquid-hydrogen tank with obstruction elements, the stratification layer is 18% thicker, and the stratum fluid is 31% warmer than the corresponding results for the smooth wall tank. The increase is attributable to the augmented heat transfer area and enhanced mixing of fluid due to the obstruction element.</description><subject>Acceleration</subject><subject>Aerospace engineering</subject><subject>Boundary layer</subject><subject>College professors</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Free convection</subject><subject>Heat</subject><subject>Obstructions</subject><subject>Propellant tanks</subject><subject>Rayleigh number</subject><subject>Reynolds number</subject><subject>Rocket propellants</subject><subject>Rockets</subject><subject>Stratification</subject><subject>Tanks</subject><subject>Thermal boundary layer</subject><subject>Thermal stratification</subject><subject>Thickness</subject><subject>Upper stage rocket engines</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Wall flow</subject><subject>Walls</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEcxIMoWKvgRwiI4GXrP5tsHsdS6gMKFa3nJZtN6vaxWZP00G_vagXFg6c5zI-ZgUHoksAoLwi7JaMxzblSR2hACkozLhQ7RgOAPM8YL-AUncW4AiBccjVA9dQ5axL2Dj9GvwxNnS32ncXzKqawM6nxbcS-xYs3G7Z6g19S0KlxjdGfFm5a_Np1NmQvSS8tfvZmbRN-Cr6zm41uE17odh3P0YnTm2gvvnWIXu-mi8lDNpvfP07Gs0xTxlNGKlBVXRtjilpWUkkhNasANGGO5q6yUIAAzTlj4CQwUFRyULVwlImcKjpEN4fcLvj3nY2p3DbRfC2xfhdLwnNFOeWF6NGrP-jK70LbrytzwoUsBGfwH0X6ZiqYkOKn1gQfY7Cu7EKz1WFfEig_TylJeTilR68PqG60_hX2l_sA13-H5Q</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Faure, Joel M</creator><creator>Oliveira, Justin M</creator><creator>Chintalapati, Sunil</creator><creator>Gutierrez, Hector M</creator><creator>Kirk, Daniel R</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201409</creationdate><title>Effect of Isogrid-Type Obstructions on Thermal Stratification in Upper-Stage Rocket Propellant Tanks</title><author>Faure, Joel M ; Oliveira, Justin M ; Chintalapati, Sunil ; Gutierrez, Hector M ; Kirk, Daniel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-1b09bddccc5d8b89878a4b00a14f32fbe05070a66440f8040938609d7f3472393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Aerospace engineering</topic><topic>Boundary layer</topic><topic>College professors</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Free convection</topic><topic>Heat</topic><topic>Obstructions</topic><topic>Propellant tanks</topic><topic>Rayleigh number</topic><topic>Reynolds number</topic><topic>Rocket propellants</topic><topic>Rockets</topic><topic>Stratification</topic><topic>Tanks</topic><topic>Thermal boundary layer</topic><topic>Thermal stratification</topic><topic>Thickness</topic><topic>Upper stage rocket engines</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Wall flow</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faure, Joel M</creatorcontrib><creatorcontrib>Oliveira, Justin M</creatorcontrib><creatorcontrib>Chintalapati, Sunil</creatorcontrib><creatorcontrib>Gutierrez, Hector M</creatorcontrib><creatorcontrib>Kirk, Daniel R</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faure, Joel M</au><au>Oliveira, Justin M</au><au>Chintalapati, Sunil</au><au>Gutierrez, Hector M</au><au>Kirk, Daniel R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Isogrid-Type Obstructions on Thermal Stratification in Upper-Stage Rocket Propellant Tanks</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2014-09</date><risdate>2014</risdate><volume>51</volume><issue>5</issue><spage>1587</spage><epage>1602</epage><pages>1587-1602</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>Analytical models for propellant thermal stratification are typically based on smooth wall flow correlations. However, many propellant tank walls have a mass-saving isogrid, which alters the boundary layer. This work investigates the boundary-layer behavior over walls with obstruction elements that are representative of isogrid or internal stiffener rings. The experimental studies reveal that the thickness of the velocity boundary layer over an isogrid wall is more than 200% thicker than a smooth wall at full-scale upper-stage tank Reynolds numbers. For buoyancy-induced free convection flows, the computational-fluid-dynamics models demonstrate that the velocity boundary layer over a wall lined with obstruction elements may be thicker or thinner than the equivalent boundary layer over a smooth wall, whereas the thermal boundary layer is always thicker for the rough wall. A Rayleigh number scaling analysis is presented for a range of fluids, tank and obstruction sizes, heat loads, and acceleration levels. When the results are applied to a full-scale liquid-hydrogen tank with obstruction elements, the stratification layer is 18% thicker, and the stratum fluid is 31% warmer than the corresponding results for the smooth wall tank. The increase is attributable to the augmented heat transfer area and enhanced mixing of fluid due to the obstruction element.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A32699</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2014-09, Vol.51 (5), p.1587-1602
issn 0022-4650
1533-6794
language eng
recordid cdi_proquest_journals_2167857640
source Alma/SFX Local Collection
subjects Acceleration
Aerospace engineering
Boundary layer
College professors
Computational fluid dynamics
Fluid flow
Fluids
Free convection
Heat
Obstructions
Propellant tanks
Rayleigh number
Reynolds number
Rocket propellants
Rockets
Stratification
Tanks
Thermal boundary layer
Thermal stratification
Thickness
Upper stage rocket engines
Velocity
Viscosity
Wall flow
Walls
title Effect of Isogrid-Type Obstructions on Thermal Stratification in Upper-Stage Rocket Propellant Tanks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Isogrid-Type%20Obstructions%20on%20Thermal%20Stratification%20in%20Upper-Stage%20Rocket%20Propellant%20Tanks&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Faure,%20Joel%20M&rft.date=2014-09&rft.volume=51&rft.issue=5&rft.spage=1587&rft.epage=1602&rft.pages=1587-1602&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A32699&rft_dat=%3Cproquest_aiaa_%3E1629363657%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609374787&rft_id=info:pmid/&rfr_iscdi=true