Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization
We consider the problem of minimizing the sum of an average function of a large number of smooth convex components and a general, possibly non-differentiable, convex function. Although many methods have been proposed to solve this problem with the assumption that the sum is strongly convex, few meth...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2019-05, Vol.181 (2), p.541-566 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | 2 |
container_start_page | 541 |
container_title | Journal of optimization theory and applications |
container_volume | 181 |
creator | Hien, Le Thi Khanh Nguyen, Cuong V. Xu, Huan Lu, Canyi Feng, Jiashi |
description | We consider the problem of minimizing the sum of an average function of a large number of smooth convex components and a general, possibly non-differentiable, convex function. Although many methods have been proposed to solve this problem with the assumption that the sum is strongly convex, few methods support the non-strongly convex case. Adding a small quadratic regularization is a common devise used to tackle non-strongly convex problems; however, it may cause loss of sparsity of solutions or weaken the performance of the algorithms. Avoiding this devise, we propose an accelerated randomized mirror descent method for solving this problem without the strongly convex assumption. Our method extends the deterministic accelerated proximal gradient methods of Paul Tseng and can be applied, even when proximal points are computed inexactly. We also propose a scheme for solving the problem, when the component functions are non-smooth. |
doi_str_mv | 10.1007/s10957-018-01469-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167529476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167529476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2e962fd68d71a7990278c7c4b485107ebfcbf103eab3dae1d00da659dc7de843</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuC62iSPtIsh_EJowOi65Amt2OHNqlJRhx_vdEK7lxc7uVwzrnwIXRGyQUlhF8GSkTJMaF1mqISuNxDM1ryHLOa1_toRghjOGe5OERHIWwIIaLmxQzJudbQg1cRTPakrHFD95nOh85757MrCBpszOb92vkuvg4ha5O8cMPoQhche3QWh-idXfe7JNt3-MhWY-xSi4qdsyfooFV9gNPffYxebq6fF3d4ubq9X8yXWOdURAwMRMVaU9WGU8WFIIzXmuuiKeqSEg5Nq5uWkhxUkxsF1BBiVFUKo7mBusiP0fnUO3r3toUQ5cZtvU0vJaMVL5koeJVcbHJp70Lw0MrRd4PyO0mJ_AYpJ5AygZQ_IGWZQvkUCsls1-D_qv9JfQFoWHgW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167529476</pqid></control><display><type>article</type><title>Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hien, Le Thi Khanh ; Nguyen, Cuong V. ; Xu, Huan ; Lu, Canyi ; Feng, Jiashi</creator><creatorcontrib>Hien, Le Thi Khanh ; Nguyen, Cuong V. ; Xu, Huan ; Lu, Canyi ; Feng, Jiashi</creatorcontrib><description>We consider the problem of minimizing the sum of an average function of a large number of smooth convex components and a general, possibly non-differentiable, convex function. Although many methods have been proposed to solve this problem with the assumption that the sum is strongly convex, few methods support the non-strongly convex case. Adding a small quadratic regularization is a common devise used to tackle non-strongly convex problems; however, it may cause loss of sparsity of solutions or weaken the performance of the algorithms. Avoiding this devise, we propose an accelerated randomized mirror descent method for solving this problem without the strongly convex assumption. Our method extends the deterministic accelerated proximal gradient methods of Paul Tseng and can be applied, even when proximal points are computed inexactly. We also propose a scheme for solving the problem, when the component functions are non-smooth.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-018-01469-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational geometry ; Convexity ; Descent ; Engineering ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Randomization ; Regularization ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2019-05, Vol.181 (2), p.541-566</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2e962fd68d71a7990278c7c4b485107ebfcbf103eab3dae1d00da659dc7de843</citedby><cites>FETCH-LOGICAL-c319t-e2e962fd68d71a7990278c7c4b485107ebfcbf103eab3dae1d00da659dc7de843</cites><orcidid>0000-0003-2532-4637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-018-01469-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-018-01469-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hien, Le Thi Khanh</creatorcontrib><creatorcontrib>Nguyen, Cuong V.</creatorcontrib><creatorcontrib>Xu, Huan</creatorcontrib><creatorcontrib>Lu, Canyi</creatorcontrib><creatorcontrib>Feng, Jiashi</creatorcontrib><title>Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We consider the problem of minimizing the sum of an average function of a large number of smooth convex components and a general, possibly non-differentiable, convex function. Although many methods have been proposed to solve this problem with the assumption that the sum is strongly convex, few methods support the non-strongly convex case. Adding a small quadratic regularization is a common devise used to tackle non-strongly convex problems; however, it may cause loss of sparsity of solutions or weaken the performance of the algorithms. Avoiding this devise, we propose an accelerated randomized mirror descent method for solving this problem without the strongly convex assumption. Our method extends the deterministic accelerated proximal gradient methods of Paul Tseng and can be applied, even when proximal points are computed inexactly. We also propose a scheme for solving the problem, when the component functions are non-smooth.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Descent</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Randomization</subject><subject>Regularization</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOD7-gKuC62iSPtIsh_EJowOi65Amt2OHNqlJRhx_vdEK7lxc7uVwzrnwIXRGyQUlhF8GSkTJMaF1mqISuNxDM1ryHLOa1_toRghjOGe5OERHIWwIIaLmxQzJudbQg1cRTPakrHFD95nOh85757MrCBpszOb92vkuvg4ha5O8cMPoQhche3QWh-idXfe7JNt3-MhWY-xSi4qdsyfooFV9gNPffYxebq6fF3d4ubq9X8yXWOdURAwMRMVaU9WGU8WFIIzXmuuiKeqSEg5Nq5uWkhxUkxsF1BBiVFUKo7mBusiP0fnUO3r3toUQ5cZtvU0vJaMVL5koeJVcbHJp70Lw0MrRd4PyO0mJ_AYpJ5AygZQ_IGWZQvkUCsls1-D_qv9JfQFoWHgW</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Hien, Le Thi Khanh</creator><creator>Nguyen, Cuong V.</creator><creator>Xu, Huan</creator><creator>Lu, Canyi</creator><creator>Feng, Jiashi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2532-4637</orcidid></search><sort><creationdate>20190501</creationdate><title>Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization</title><author>Hien, Le Thi Khanh ; Nguyen, Cuong V. ; Xu, Huan ; Lu, Canyi ; Feng, Jiashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2e962fd68d71a7990278c7c4b485107ebfcbf103eab3dae1d00da659dc7de843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Descent</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Randomization</topic><topic>Regularization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hien, Le Thi Khanh</creatorcontrib><creatorcontrib>Nguyen, Cuong V.</creatorcontrib><creatorcontrib>Xu, Huan</creatorcontrib><creatorcontrib>Lu, Canyi</creatorcontrib><creatorcontrib>Feng, Jiashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hien, Le Thi Khanh</au><au>Nguyen, Cuong V.</au><au>Xu, Huan</au><au>Lu, Canyi</au><au>Feng, Jiashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>181</volume><issue>2</issue><spage>541</spage><epage>566</epage><pages>541-566</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We consider the problem of minimizing the sum of an average function of a large number of smooth convex components and a general, possibly non-differentiable, convex function. Although many methods have been proposed to solve this problem with the assumption that the sum is strongly convex, few methods support the non-strongly convex case. Adding a small quadratic regularization is a common devise used to tackle non-strongly convex problems; however, it may cause loss of sparsity of solutions or weaken the performance of the algorithms. Avoiding this devise, we propose an accelerated randomized mirror descent method for solving this problem without the strongly convex assumption. Our method extends the deterministic accelerated proximal gradient methods of Paul Tseng and can be applied, even when proximal points are computed inexactly. We also propose a scheme for solving the problem, when the component functions are non-smooth.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-018-01469-5</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2532-4637</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2019-05, Vol.181 (2), p.541-566 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2167529476 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational geometry Convexity Descent Engineering Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Randomization Regularization Theory of Computation |
title | Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Randomized%20Mirror%20Descent%20Algorithms%20for%20Composite%20Non-strongly%20Convex%20Optimization&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Hien,%20Le%20Thi%20Khanh&rft.date=2019-05-01&rft.volume=181&rft.issue=2&rft.spage=541&rft.epage=566&rft.pages=541-566&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-018-01469-5&rft_dat=%3Cproquest_cross%3E2167529476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167529476&rft_id=info:pmid/&rfr_iscdi=true |