Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells

To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2018-08, Vol.57 (8), p.08RC08
Hauptverfasser: Ando, Yuta, Ishizuka, Shogo, Wang, Shenghao, Chen, Jingdong, Islam, Muhammad Monirul, Shibata, Hajime, Akimoto, Katsuhiro, Sakurai, Takeaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 08RC08
container_title Japanese Journal of Applied Physics
container_volume 57
creator Ando, Yuta
Ishizuka, Shogo
Wang, Shenghao
Chen, Jingdong
Islam, Muhammad Monirul
Shibata, Hajime
Akimoto, Katsuhiro
Sakurai, Takeaki
description To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.
doi_str_mv 10.7567/JJAP.57.08RC08
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2167296940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167296940</sourcerecordid><originalsourceid>FETCH-proquest_journals_21672969403</originalsourceid><addsrcrecordid>eNqNi09LwzAYh8NwsOq8en7Bi4KtSZYm61HK_LOTTM8bSfuuZsSkJi1-fYv4ATw9PDy_HyFXjBaqlOp-u314LUpV0PWupusZydhKqFxQWZ6RjFLOclFxviDnKZ0mlaVgGel26PRgg08ftgeDwzeiB6N92-keuqhb6zuYFBodo8UIEZvwaaz_fcExRKjHmxd_96Rv33CfRgN8nxudsIUUnI7QoHNpSeZH7RJe_vGCXD9u3uvnvI_ha8Q0HE5hjH5KB86k4pWsBF39b_UDvXJNEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167296940</pqid></control><display><type>article</type><title>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ando, Yuta ; Ishizuka, Shogo ; Wang, Shenghao ; Chen, Jingdong ; Islam, Muhammad Monirul ; Shibata, Hajime ; Akimoto, Katsuhiro ; Sakurai, Takeaki</creator><creatorcontrib>Ando, Yuta ; Ishizuka, Shogo ; Wang, Shenghao ; Chen, Jingdong ; Islam, Muhammad Monirul ; Shibata, Hajime ; Akimoto, Katsuhiro ; Sakurai, Takeaki</creatorcontrib><description>To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.57.08RC08</identifier><language>eng</language><publisher>Tokyo: Japanese Journal of Applied Physics</publisher><subject>Carrier mobility ; Carrier recombination ; Circuits ; Copper indium gallium selenides ; Electrical measurement ; Energy gap ; Evaluation ; Grading ; Luminous intensity ; Open circuit voltage ; Optoelectronics ; Photoluminescence ; Photovoltaic cells ; Solar cells ; Temperature dependence</subject><ispartof>Japanese Journal of Applied Physics, 2018-08, Vol.57 (8), p.08RC08</ispartof><rights>Copyright Japanese Journal of Applied Physics Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ando, Yuta</creatorcontrib><creatorcontrib>Ishizuka, Shogo</creatorcontrib><creatorcontrib>Wang, Shenghao</creatorcontrib><creatorcontrib>Chen, Jingdong</creatorcontrib><creatorcontrib>Islam, Muhammad Monirul</creatorcontrib><creatorcontrib>Shibata, Hajime</creatorcontrib><creatorcontrib>Akimoto, Katsuhiro</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><title>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</title><title>Japanese Journal of Applied Physics</title><description>To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.</description><subject>Carrier mobility</subject><subject>Carrier recombination</subject><subject>Circuits</subject><subject>Copper indium gallium selenides</subject><subject>Electrical measurement</subject><subject>Energy gap</subject><subject>Evaluation</subject><subject>Grading</subject><subject>Luminous intensity</subject><subject>Open circuit voltage</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNi09LwzAYh8NwsOq8en7Bi4KtSZYm61HK_LOTTM8bSfuuZsSkJi1-fYv4ATw9PDy_HyFXjBaqlOp-u314LUpV0PWupusZydhKqFxQWZ6RjFLOclFxviDnKZ0mlaVgGel26PRgg08ftgeDwzeiB6N92-keuqhb6zuYFBodo8UIEZvwaaz_fcExRKjHmxd_96Rv33CfRgN8nxudsIUUnI7QoHNpSeZH7RJe_vGCXD9u3uvnvI_ha8Q0HE5hjH5KB86k4pWsBF39b_UDvXJNEA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Ando, Yuta</creator><creator>Ishizuka, Shogo</creator><creator>Wang, Shenghao</creator><creator>Chen, Jingdong</creator><creator>Islam, Muhammad Monirul</creator><creator>Shibata, Hajime</creator><creator>Akimoto, Katsuhiro</creator><creator>Sakurai, Takeaki</creator><general>Japanese Journal of Applied Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180801</creationdate><title>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</title><author>Ando, Yuta ; Ishizuka, Shogo ; Wang, Shenghao ; Chen, Jingdong ; Islam, Muhammad Monirul ; Shibata, Hajime ; Akimoto, Katsuhiro ; Sakurai, Takeaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21672969403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier mobility</topic><topic>Carrier recombination</topic><topic>Circuits</topic><topic>Copper indium gallium selenides</topic><topic>Electrical measurement</topic><topic>Energy gap</topic><topic>Evaluation</topic><topic>Grading</topic><topic>Luminous intensity</topic><topic>Open circuit voltage</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Yuta</creatorcontrib><creatorcontrib>Ishizuka, Shogo</creatorcontrib><creatorcontrib>Wang, Shenghao</creatorcontrib><creatorcontrib>Chen, Jingdong</creatorcontrib><creatorcontrib>Islam, Muhammad Monirul</creatorcontrib><creatorcontrib>Shibata, Hajime</creatorcontrib><creatorcontrib>Akimoto, Katsuhiro</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Yuta</au><au>Ishizuka, Shogo</au><au>Wang, Shenghao</au><au>Chen, Jingdong</au><au>Islam, Muhammad Monirul</au><au>Shibata, Hajime</au><au>Akimoto, Katsuhiro</au><au>Sakurai, Takeaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>57</volume><issue>8</issue><spage>08RC08</spage><pages>08RC08-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.</abstract><cop>Tokyo</cop><pub>Japanese Journal of Applied Physics</pub><doi>10.7567/JJAP.57.08RC08</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2018-08, Vol.57 (8), p.08RC08
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2167296940
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Carrier mobility
Carrier recombination
Circuits
Copper indium gallium selenides
Electrical measurement
Energy gap
Evaluation
Grading
Luminous intensity
Open circuit voltage
Optoelectronics
Photoluminescence
Photovoltaic cells
Solar cells
Temperature dependence
title Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20bandgap%20grading%20and%20carrier%20recombination%20for%20Cu(In,Ga)Se%5Esub%202%5E-based%20solar%20cells&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Ando,%20Yuta&rft.date=2018-08-01&rft.volume=57&rft.issue=8&rft.spage=08RC08&rft.pages=08RC08-&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.7567/JJAP.57.08RC08&rft_dat=%3Cproquest%3E2167296940%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167296940&rft_id=info:pmid/&rfr_iscdi=true