Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells
To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage grow...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2018-08, Vol.57 (8), p.08RC08 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 08RC08 |
container_title | Japanese Journal of Applied Physics |
container_volume | 57 |
creator | Ando, Yuta Ishizuka, Shogo Wang, Shenghao Chen, Jingdong Islam, Muhammad Monirul Shibata, Hajime Akimoto, Katsuhiro Sakurai, Takeaki |
description | To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells. |
doi_str_mv | 10.7567/JJAP.57.08RC08 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2167296940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167296940</sourcerecordid><originalsourceid>FETCH-proquest_journals_21672969403</originalsourceid><addsrcrecordid>eNqNi09LwzAYh8NwsOq8en7Bi4KtSZYm61HK_LOTTM8bSfuuZsSkJi1-fYv4ATw9PDy_HyFXjBaqlOp-u314LUpV0PWupusZydhKqFxQWZ6RjFLOclFxviDnKZ0mlaVgGel26PRgg08ftgeDwzeiB6N92-keuqhb6zuYFBodo8UIEZvwaaz_fcExRKjHmxd_96Rv33CfRgN8nxudsIUUnI7QoHNpSeZH7RJe_vGCXD9u3uvnvI_ha8Q0HE5hjH5KB86k4pWsBF39b_UDvXJNEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167296940</pqid></control><display><type>article</type><title>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ando, Yuta ; Ishizuka, Shogo ; Wang, Shenghao ; Chen, Jingdong ; Islam, Muhammad Monirul ; Shibata, Hajime ; Akimoto, Katsuhiro ; Sakurai, Takeaki</creator><creatorcontrib>Ando, Yuta ; Ishizuka, Shogo ; Wang, Shenghao ; Chen, Jingdong ; Islam, Muhammad Monirul ; Shibata, Hajime ; Akimoto, Katsuhiro ; Sakurai, Takeaki</creatorcontrib><description>To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.57.08RC08</identifier><language>eng</language><publisher>Tokyo: Japanese Journal of Applied Physics</publisher><subject>Carrier mobility ; Carrier recombination ; Circuits ; Copper indium gallium selenides ; Electrical measurement ; Energy gap ; Evaluation ; Grading ; Luminous intensity ; Open circuit voltage ; Optoelectronics ; Photoluminescence ; Photovoltaic cells ; Solar cells ; Temperature dependence</subject><ispartof>Japanese Journal of Applied Physics, 2018-08, Vol.57 (8), p.08RC08</ispartof><rights>Copyright Japanese Journal of Applied Physics Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ando, Yuta</creatorcontrib><creatorcontrib>Ishizuka, Shogo</creatorcontrib><creatorcontrib>Wang, Shenghao</creatorcontrib><creatorcontrib>Chen, Jingdong</creatorcontrib><creatorcontrib>Islam, Muhammad Monirul</creatorcontrib><creatorcontrib>Shibata, Hajime</creatorcontrib><creatorcontrib>Akimoto, Katsuhiro</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><title>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</title><title>Japanese Journal of Applied Physics</title><description>To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.</description><subject>Carrier mobility</subject><subject>Carrier recombination</subject><subject>Circuits</subject><subject>Copper indium gallium selenides</subject><subject>Electrical measurement</subject><subject>Energy gap</subject><subject>Evaluation</subject><subject>Grading</subject><subject>Luminous intensity</subject><subject>Open circuit voltage</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNi09LwzAYh8NwsOq8en7Bi4KtSZYm61HK_LOTTM8bSfuuZsSkJi1-fYv4ATw9PDy_HyFXjBaqlOp-u314LUpV0PWupusZydhKqFxQWZ6RjFLOclFxviDnKZ0mlaVgGel26PRgg08ftgeDwzeiB6N92-keuqhb6zuYFBodo8UIEZvwaaz_fcExRKjHmxd_96Rv33CfRgN8nxudsIUUnI7QoHNpSeZH7RJe_vGCXD9u3uvnvI_ha8Q0HE5hjH5KB86k4pWsBF39b_UDvXJNEA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Ando, Yuta</creator><creator>Ishizuka, Shogo</creator><creator>Wang, Shenghao</creator><creator>Chen, Jingdong</creator><creator>Islam, Muhammad Monirul</creator><creator>Shibata, Hajime</creator><creator>Akimoto, Katsuhiro</creator><creator>Sakurai, Takeaki</creator><general>Japanese Journal of Applied Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180801</creationdate><title>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</title><author>Ando, Yuta ; Ishizuka, Shogo ; Wang, Shenghao ; Chen, Jingdong ; Islam, Muhammad Monirul ; Shibata, Hajime ; Akimoto, Katsuhiro ; Sakurai, Takeaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21672969403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier mobility</topic><topic>Carrier recombination</topic><topic>Circuits</topic><topic>Copper indium gallium selenides</topic><topic>Electrical measurement</topic><topic>Energy gap</topic><topic>Evaluation</topic><topic>Grading</topic><topic>Luminous intensity</topic><topic>Open circuit voltage</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Yuta</creatorcontrib><creatorcontrib>Ishizuka, Shogo</creatorcontrib><creatorcontrib>Wang, Shenghao</creatorcontrib><creatorcontrib>Chen, Jingdong</creatorcontrib><creatorcontrib>Islam, Muhammad Monirul</creatorcontrib><creatorcontrib>Shibata, Hajime</creatorcontrib><creatorcontrib>Akimoto, Katsuhiro</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Yuta</au><au>Ishizuka, Shogo</au><au>Wang, Shenghao</au><au>Chen, Jingdong</au><au>Islam, Muhammad Monirul</au><au>Shibata, Hajime</au><au>Akimoto, Katsuhiro</au><au>Sakurai, Takeaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>57</volume><issue>8</issue><spage>08RC08</spage><pages>08RC08-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>To understand the effect of bandgap grading on carrier recombination for Cu(In,Ga)Se2 (CIGS)-based solar cells in detail, samples with different bandgaps at the CIGS surface were fabricated by changing the Ga/(Ga + In) (GGI) ratio from 0.4 to 0 at the third stage of the conventional three-stage growth process. Optoelectronic characterizations, such as photoluminescence, temperature-dependent open-circuit voltage measurement and light-intensity-dependent current–voltage measurement, indicate that the photo-generated carriers move rapidly towards the location of the bandgap minimum, and the carrier recombination occurs mainly at this location. From simulation using a one-dimensional solar cell capacitance simulator (SCAPS-1D), a single-grade sample with the smallest bandgap on the surface of CIGS showed high recombination current at the surface, while the location of the maximum recombination current moved from the surface to the bulk for double-grade samples. This study suggests that controlling the bandgap grading is one way of suppressing recombination at the interface in CIGS-based solar cells.</abstract><cop>Tokyo</cop><pub>Japanese Journal of Applied Physics</pub><doi>10.7567/JJAP.57.08RC08</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2018-08, Vol.57 (8), p.08RC08 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_proquest_journals_2167296940 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Carrier mobility Carrier recombination Circuits Copper indium gallium selenides Electrical measurement Energy gap Evaluation Grading Luminous intensity Open circuit voltage Optoelectronics Photoluminescence Photovoltaic cells Solar cells Temperature dependence |
title | Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se^sub 2^-based solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20bandgap%20grading%20and%20carrier%20recombination%20for%20Cu(In,Ga)Se%5Esub%202%5E-based%20solar%20cells&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Ando,%20Yuta&rft.date=2018-08-01&rft.volume=57&rft.issue=8&rft.spage=08RC08&rft.pages=08RC08-&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.7567/JJAP.57.08RC08&rft_dat=%3Cproquest%3E2167296940%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167296940&rft_id=info:pmid/&rfr_iscdi=true |