Bias detection of \(PM_{2.5}\) monitor readings using hidden dynamic geostatistical calibration model

Accurate and reliable data stream plays an important role in air quality assessment. Air pollution data collected from monitoring networks, however, could be biased due to instrumental error or other interventions, which covers up the real pollution status and misleads policy making. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Wang, Yaqiong, Xu, Minya, Huang, Hui, Chen, Songxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Yaqiong
Xu, Minya
Huang, Hui
Chen, Songxi
description Accurate and reliable data stream plays an important role in air quality assessment. Air pollution data collected from monitoring networks, however, could be biased due to instrumental error or other interventions, which covers up the real pollution status and misleads policy making. In this study, motivated by the needs for objective bias detection, we propose a hidden dynamic geostatistical calibration (HDGC) model to automatically identify monitoring stations with constantly biased readings. The HDGC model is a two-level hierarchical model whose parameters are estimated through an efficient Expectation-Maximization algorithm. Effectiveness of the proposed model is demonstrated by a simple numerical study. Our method is applied to hourly \(PM_{2.5}\) data from 36 stations in Hebei province, China, over the period from March 2014 to February 2017. Significantly abnormal readings are detected from stations in two cities.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2167177490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167177490</sourcerecordid><originalsourceid>FETCH-proquest_journals_21671774903</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMgKOo_PHDRQWlTa3VVFBfBwbFQYvNan7SJ5qWDiP9uET_A4XCGc7kd0ZdRFM5WCyl7YsR8C4JALhMZx1Ff4IYUg0aPuSdrwBaQTk7H7CXn8TudQm0NeevAodJkSoaGW8GVtEYD-mlUTTmUaNkrT-wpVxW00MWp72FtNVZD0S1UxTj6eSDG-915e5jdnX00yD672caZNmUyXCZhkizWQfTf6gMZ7UaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167177490</pqid></control><display><type>article</type><title>Bias detection of \(PM_{2.5}\) monitor readings using hidden dynamic geostatistical calibration model</title><source>Free E- Journals</source><creator>Wang, Yaqiong ; Xu, Minya ; Huang, Hui ; Chen, Songxi</creator><creatorcontrib>Wang, Yaqiong ; Xu, Minya ; Huang, Hui ; Chen, Songxi</creatorcontrib><description>Accurate and reliable data stream plays an important role in air quality assessment. Air pollution data collected from monitoring networks, however, could be biased due to instrumental error or other interventions, which covers up the real pollution status and misleads policy making. In this study, motivated by the needs for objective bias detection, we propose a hidden dynamic geostatistical calibration (HDGC) model to automatically identify monitoring stations with constantly biased readings. The HDGC model is a two-level hierarchical model whose parameters are estimated through an efficient Expectation-Maximization algorithm. Effectiveness of the proposed model is demonstrated by a simple numerical study. Our method is applied to hourly \(PM_{2.5}\) data from 36 stations in Hebei province, China, over the period from March 2014 to February 2017. Significantly abnormal readings are detected from stations in two cities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Air pollution ; Air quality ; Bias ; Calibration ; Data transmission ; Geostatistics ; Mathematical models ; Parameter estimation ; Pollution monitoring ; Quality assessment ; Stations ; Stream pollution</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Yaqiong</creatorcontrib><creatorcontrib>Xu, Minya</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Chen, Songxi</creatorcontrib><title>Bias detection of \(PM_{2.5}\) monitor readings using hidden dynamic geostatistical calibration model</title><title>arXiv.org</title><description>Accurate and reliable data stream plays an important role in air quality assessment. Air pollution data collected from monitoring networks, however, could be biased due to instrumental error or other interventions, which covers up the real pollution status and misleads policy making. In this study, motivated by the needs for objective bias detection, we propose a hidden dynamic geostatistical calibration (HDGC) model to automatically identify monitoring stations with constantly biased readings. The HDGC model is a two-level hierarchical model whose parameters are estimated through an efficient Expectation-Maximization algorithm. Effectiveness of the proposed model is demonstrated by a simple numerical study. Our method is applied to hourly \(PM_{2.5}\) data from 36 stations in Hebei province, China, over the period from March 2014 to February 2017. Significantly abnormal readings are detected from stations in two cities.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Bias</subject><subject>Calibration</subject><subject>Data transmission</subject><subject>Geostatistics</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Pollution monitoring</subject><subject>Quality assessment</subject><subject>Stations</subject><subject>Stream pollution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLEKwjAURYMgKOo_PHDRQWlTa3VVFBfBwbFQYvNan7SJ5qWDiP9uET_A4XCGc7kd0ZdRFM5WCyl7YsR8C4JALhMZx1Ff4IYUg0aPuSdrwBaQTk7H7CXn8TudQm0NeevAodJkSoaGW8GVtEYD-mlUTTmUaNkrT-wpVxW00MWp72FtNVZD0S1UxTj6eSDG-915e5jdnX00yD672caZNmUyXCZhkizWQfTf6gMZ7UaM</recordid><startdate>20190113</startdate><enddate>20190113</enddate><creator>Wang, Yaqiong</creator><creator>Xu, Minya</creator><creator>Huang, Hui</creator><creator>Chen, Songxi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190113</creationdate><title>Bias detection of \(PM_{2.5}\) monitor readings using hidden dynamic geostatistical calibration model</title><author>Wang, Yaqiong ; Xu, Minya ; Huang, Hui ; Chen, Songxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21671774903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Bias</topic><topic>Calibration</topic><topic>Data transmission</topic><topic>Geostatistics</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Pollution monitoring</topic><topic>Quality assessment</topic><topic>Stations</topic><topic>Stream pollution</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaqiong</creatorcontrib><creatorcontrib>Xu, Minya</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Chen, Songxi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yaqiong</au><au>Xu, Minya</au><au>Huang, Hui</au><au>Chen, Songxi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bias detection of \(PM_{2.5}\) monitor readings using hidden dynamic geostatistical calibration model</atitle><jtitle>arXiv.org</jtitle><date>2019-01-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Accurate and reliable data stream plays an important role in air quality assessment. Air pollution data collected from monitoring networks, however, could be biased due to instrumental error or other interventions, which covers up the real pollution status and misleads policy making. In this study, motivated by the needs for objective bias detection, we propose a hidden dynamic geostatistical calibration (HDGC) model to automatically identify monitoring stations with constantly biased readings. The HDGC model is a two-level hierarchical model whose parameters are estimated through an efficient Expectation-Maximization algorithm. Effectiveness of the proposed model is demonstrated by a simple numerical study. Our method is applied to hourly \(PM_{2.5}\) data from 36 stations in Hebei province, China, over the period from March 2014 to February 2017. Significantly abnormal readings are detected from stations in two cities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2167177490
source Free E- Journals
subjects Air pollution
Air quality
Bias
Calibration
Data transmission
Geostatistics
Mathematical models
Parameter estimation
Pollution monitoring
Quality assessment
Stations
Stream pollution
title Bias detection of \(PM_{2.5}\) monitor readings using hidden dynamic geostatistical calibration model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bias%20detection%20of%20%5C(PM_%7B2.5%7D%5C)%20monitor%20readings%20using%20hidden%20dynamic%20geostatistical%20calibration%20model&rft.jtitle=arXiv.org&rft.au=Wang,%20Yaqiong&rft.date=2019-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2167177490%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167177490&rft_id=info:pmid/&rfr_iscdi=true