An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra
Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (3), p.946-957 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 957 |
---|---|
container_issue | 3 |
container_start_page | 946 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Javed, Muhammad Sufyan Shaheen, Nusrat Hussain, Shahid Li, Jinliang Shah, Syed Shoaib Ahmad Abbas, Yasir Ahmad, Muhammad Ashfaq Raza, Rizwan Mai, Wenjie |
description | Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g
−1
at a current density of 1.5 A g
−1
in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (>94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg
−1
at a power density of 1490.4 W kg
−1
with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs. |
doi_str_mv | 10.1039/C8TA08816K |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167169979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167169979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</originalsourceid><addsrcrecordid>eNpFkc1O3TAQhaMKpCJg0yew1F2lgB3nJvby6rb8CBAbuo7G9oQY5cbp2GnJa_GENQLBbGak880ZaU5RfBP8THCpz3fqYcuVEs3Nl-Ko4htetrVuDj5mpb4WpzE-8VyK80bro-JlO7FlTATl4B8HhhPS48ocTtGnlfUjPnszIoO47veYyFsWlxnJwgzWp0DMQETHwsQGjwRkB29hZD2YV9ahDQQpA_98Glj1kxmfbWAcsxievUM2wRTigJgig8mxu_uL0iH5v3lnDhSWyCyQyf5zGNcBHcFJcdjDGPH0vR8Xvy9-Peyuytv7y-vd9ra0UraprCtZKd03pm034LSSvEeorWo5d6IRNUoutMmEUrXkaHRWemUEV7XhG9HK4-L7m-9M4c-CMXVPYaEpn-wq0bQi_6_VmfrxRlkKMRL23Ux-D7R2gnevsXSfscj_k8uCKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167169979</pqid></control><display><type>article</type><title>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Javed, Muhammad Sufyan ; Shaheen, Nusrat ; Hussain, Shahid ; Li, Jinliang ; Shah, Syed Shoaib Ahmad ; Abbas, Yasir ; Ahmad, Muhammad Ashfaq ; Raza, Rizwan ; Mai, Wenjie</creator><creatorcontrib>Javed, Muhammad Sufyan ; Shaheen, Nusrat ; Hussain, Shahid ; Li, Jinliang ; Shah, Syed Shoaib Ahmad ; Abbas, Yasir ; Ahmad, Muhammad Ashfaq ; Raza, Rizwan ; Mai, Wenjie</creatorcontrib><description>Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g
−1
at a current density of 1.5 A g
−1
in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (>94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg
−1
at a power density of 1490.4 W kg
−1
with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA08816K</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Bimetals ; Capacitance ; Carbon ; Carbonaceous materials ; Cloth ; Cobalt ; Current density ; Cycles ; Electrochemistry ; Electrodes ; Energy ; Energy storage ; Flux density ; Lithium chloride ; Low temperature ; Metal oxides ; Metal-organic frameworks ; Metals ; Nanosheets ; Oxides ; Polyhedra ; Potassium chloride ; Sodium chloride ; Stability ; Substrates ; Supercapacitors ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.946-957</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</citedby><cites>FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</cites><orcidid>0000-0002-2771-0251 ; 0000-0003-1741-6048 ; 0000-0003-0599-3630 ; 0000-0002-2200-5123 ; 0000-0003-4363-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Javed, Muhammad Sufyan</creatorcontrib><creatorcontrib>Shaheen, Nusrat</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Li, Jinliang</creatorcontrib><creatorcontrib>Shah, Syed Shoaib Ahmad</creatorcontrib><creatorcontrib>Abbas, Yasir</creatorcontrib><creatorcontrib>Ahmad, Muhammad Ashfaq</creatorcontrib><creatorcontrib>Raza, Rizwan</creatorcontrib><creatorcontrib>Mai, Wenjie</creatorcontrib><title>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g
−1
at a current density of 1.5 A g
−1
in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (>94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg
−1
at a power density of 1490.4 W kg
−1
with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.</description><subject>Aqueous electrolytes</subject><subject>Bimetals</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Carbonaceous materials</subject><subject>Cloth</subject><subject>Cobalt</subject><subject>Current density</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Lithium chloride</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nanosheets</subject><subject>Oxides</subject><subject>Polyhedra</subject><subject>Potassium chloride</subject><subject>Sodium chloride</subject><subject>Stability</subject><subject>Substrates</subject><subject>Supercapacitors</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkc1O3TAQhaMKpCJg0yew1F2lgB3nJvby6rb8CBAbuo7G9oQY5cbp2GnJa_GENQLBbGak880ZaU5RfBP8THCpz3fqYcuVEs3Nl-Ko4htetrVuDj5mpb4WpzE-8VyK80bro-JlO7FlTATl4B8HhhPS48ocTtGnlfUjPnszIoO47veYyFsWlxnJwgzWp0DMQETHwsQGjwRkB29hZD2YV9ahDQQpA_98Glj1kxmfbWAcsxievUM2wRTigJgig8mxu_uL0iH5v3lnDhSWyCyQyf5zGNcBHcFJcdjDGPH0vR8Xvy9-Peyuytv7y-vd9ra0UraprCtZKd03pm034LSSvEeorWo5d6IRNUoutMmEUrXkaHRWemUEV7XhG9HK4-L7m-9M4c-CMXVPYaEpn-wq0bQi_6_VmfrxRlkKMRL23Ux-D7R2gnevsXSfscj_k8uCKA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Javed, Muhammad Sufyan</creator><creator>Shaheen, Nusrat</creator><creator>Hussain, Shahid</creator><creator>Li, Jinliang</creator><creator>Shah, Syed Shoaib Ahmad</creator><creator>Abbas, Yasir</creator><creator>Ahmad, Muhammad Ashfaq</creator><creator>Raza, Rizwan</creator><creator>Mai, Wenjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2771-0251</orcidid><orcidid>https://orcid.org/0000-0003-1741-6048</orcidid><orcidid>https://orcid.org/0000-0003-0599-3630</orcidid><orcidid>https://orcid.org/0000-0002-2200-5123</orcidid><orcidid>https://orcid.org/0000-0003-4363-2799</orcidid></search><sort><creationdate>2019</creationdate><title>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</title><author>Javed, Muhammad Sufyan ; Shaheen, Nusrat ; Hussain, Shahid ; Li, Jinliang ; Shah, Syed Shoaib Ahmad ; Abbas, Yasir ; Ahmad, Muhammad Ashfaq ; Raza, Rizwan ; Mai, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous electrolytes</topic><topic>Bimetals</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Carbonaceous materials</topic><topic>Cloth</topic><topic>Cobalt</topic><topic>Current density</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Lithium chloride</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nanosheets</topic><topic>Oxides</topic><topic>Polyhedra</topic><topic>Potassium chloride</topic><topic>Sodium chloride</topic><topic>Stability</topic><topic>Substrates</topic><topic>Supercapacitors</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Muhammad Sufyan</creatorcontrib><creatorcontrib>Shaheen, Nusrat</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Li, Jinliang</creatorcontrib><creatorcontrib>Shah, Syed Shoaib Ahmad</creatorcontrib><creatorcontrib>Abbas, Yasir</creatorcontrib><creatorcontrib>Ahmad, Muhammad Ashfaq</creatorcontrib><creatorcontrib>Raza, Rizwan</creatorcontrib><creatorcontrib>Mai, Wenjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javed, Muhammad Sufyan</au><au>Shaheen, Nusrat</au><au>Hussain, Shahid</au><au>Li, Jinliang</au><au>Shah, Syed Shoaib Ahmad</au><au>Abbas, Yasir</au><au>Ahmad, Muhammad Ashfaq</au><au>Raza, Rizwan</au><au>Mai, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>946</spage><epage>957</epage><pages>946-957</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g
−1
at a current density of 1.5 A g
−1
in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (>94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg
−1
at a power density of 1490.4 W kg
−1
with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA08816K</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2771-0251</orcidid><orcidid>https://orcid.org/0000-0003-1741-6048</orcidid><orcidid>https://orcid.org/0000-0003-0599-3630</orcidid><orcidid>https://orcid.org/0000-0002-2200-5123</orcidid><orcidid>https://orcid.org/0000-0003-4363-2799</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.946-957 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2167169979 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aqueous electrolytes Bimetals Capacitance Carbon Carbonaceous materials Cloth Cobalt Current density Cycles Electrochemistry Electrodes Energy Energy storage Flux density Lithium chloride Low temperature Metal oxides Metal-organic frameworks Metals Nanosheets Oxides Polyhedra Potassium chloride Sodium chloride Stability Substrates Supercapacitors Zinc |
title | An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-high%20energy%20density%20flexible%20asymmetric%20supercapacitor%20based%20on%20hierarchical%20fabric%20decorated%20with%202D%20bimetallic%20oxide%20nanosheets%20and%20MOF-derived%20porous%20carbon%20polyhedra&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Javed,%20Muhammad%20Sufyan&rft.date=2019&rft.volume=7&rft.issue=3&rft.spage=946&rft.epage=957&rft.pages=946-957&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA08816K&rft_dat=%3Cproquest_cross%3E2167169979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167169979&rft_id=info:pmid/&rfr_iscdi=true |