An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra

Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (3), p.946-957
Hauptverfasser: Javed, Muhammad Sufyan, Shaheen, Nusrat, Hussain, Shahid, Li, Jinliang, Shah, Syed Shoaib Ahmad, Abbas, Yasir, Ahmad, Muhammad Ashfaq, Raza, Rizwan, Mai, Wenjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 957
container_issue 3
container_start_page 946
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Javed, Muhammad Sufyan
Shaheen, Nusrat
Hussain, Shahid
Li, Jinliang
Shah, Syed Shoaib Ahmad
Abbas, Yasir
Ahmad, Muhammad Ashfaq
Raza, Rizwan
Mai, Wenjie
description Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g −1 at a current density of 1.5 A g −1 in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (>94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg −1 at a power density of 1490.4 W kg −1 with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.
doi_str_mv 10.1039/C8TA08816K
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167169979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167169979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</originalsourceid><addsrcrecordid>eNpFkc1O3TAQhaMKpCJg0yew1F2lgB3nJvby6rb8CBAbuo7G9oQY5cbp2GnJa_GENQLBbGak880ZaU5RfBP8THCpz3fqYcuVEs3Nl-Ko4htetrVuDj5mpb4WpzE-8VyK80bro-JlO7FlTATl4B8HhhPS48ocTtGnlfUjPnszIoO47veYyFsWlxnJwgzWp0DMQETHwsQGjwRkB29hZD2YV9ahDQQpA_98Glj1kxmfbWAcsxievUM2wRTigJgig8mxu_uL0iH5v3lnDhSWyCyQyf5zGNcBHcFJcdjDGPH0vR8Xvy9-Peyuytv7y-vd9ra0UraprCtZKd03pm034LSSvEeorWo5d6IRNUoutMmEUrXkaHRWemUEV7XhG9HK4-L7m-9M4c-CMXVPYaEpn-wq0bQi_6_VmfrxRlkKMRL23Ux-D7R2gnevsXSfscj_k8uCKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167169979</pqid></control><display><type>article</type><title>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Javed, Muhammad Sufyan ; Shaheen, Nusrat ; Hussain, Shahid ; Li, Jinliang ; Shah, Syed Shoaib Ahmad ; Abbas, Yasir ; Ahmad, Muhammad Ashfaq ; Raza, Rizwan ; Mai, Wenjie</creator><creatorcontrib>Javed, Muhammad Sufyan ; Shaheen, Nusrat ; Hussain, Shahid ; Li, Jinliang ; Shah, Syed Shoaib Ahmad ; Abbas, Yasir ; Ahmad, Muhammad Ashfaq ; Raza, Rizwan ; Mai, Wenjie</creatorcontrib><description>Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g −1 at a current density of 1.5 A g −1 in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (&gt;94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg −1 at a power density of 1490.4 W kg −1 with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA08816K</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Bimetals ; Capacitance ; Carbon ; Carbonaceous materials ; Cloth ; Cobalt ; Current density ; Cycles ; Electrochemistry ; Electrodes ; Energy ; Energy storage ; Flux density ; Lithium chloride ; Low temperature ; Metal oxides ; Metal-organic frameworks ; Metals ; Nanosheets ; Oxides ; Polyhedra ; Potassium chloride ; Sodium chloride ; Stability ; Substrates ; Supercapacitors ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.946-957</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</citedby><cites>FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</cites><orcidid>0000-0002-2771-0251 ; 0000-0003-1741-6048 ; 0000-0003-0599-3630 ; 0000-0002-2200-5123 ; 0000-0003-4363-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Javed, Muhammad Sufyan</creatorcontrib><creatorcontrib>Shaheen, Nusrat</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Li, Jinliang</creatorcontrib><creatorcontrib>Shah, Syed Shoaib Ahmad</creatorcontrib><creatorcontrib>Abbas, Yasir</creatorcontrib><creatorcontrib>Ahmad, Muhammad Ashfaq</creatorcontrib><creatorcontrib>Raza, Rizwan</creatorcontrib><creatorcontrib>Mai, Wenjie</creatorcontrib><title>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g −1 at a current density of 1.5 A g −1 in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (&gt;94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg −1 at a power density of 1490.4 W kg −1 with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.</description><subject>Aqueous electrolytes</subject><subject>Bimetals</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Carbonaceous materials</subject><subject>Cloth</subject><subject>Cobalt</subject><subject>Current density</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Lithium chloride</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nanosheets</subject><subject>Oxides</subject><subject>Polyhedra</subject><subject>Potassium chloride</subject><subject>Sodium chloride</subject><subject>Stability</subject><subject>Substrates</subject><subject>Supercapacitors</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkc1O3TAQhaMKpCJg0yew1F2lgB3nJvby6rb8CBAbuo7G9oQY5cbp2GnJa_GENQLBbGak880ZaU5RfBP8THCpz3fqYcuVEs3Nl-Ko4htetrVuDj5mpb4WpzE-8VyK80bro-JlO7FlTATl4B8HhhPS48ocTtGnlfUjPnszIoO47veYyFsWlxnJwgzWp0DMQETHwsQGjwRkB29hZD2YV9ahDQQpA_98Glj1kxmfbWAcsxievUM2wRTigJgig8mxu_uL0iH5v3lnDhSWyCyQyf5zGNcBHcFJcdjDGPH0vR8Xvy9-Peyuytv7y-vd9ra0UraprCtZKd03pm034LSSvEeorWo5d6IRNUoutMmEUrXkaHRWemUEV7XhG9HK4-L7m-9M4c-CMXVPYaEpn-wq0bQi_6_VmfrxRlkKMRL23Ux-D7R2gnevsXSfscj_k8uCKA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Javed, Muhammad Sufyan</creator><creator>Shaheen, Nusrat</creator><creator>Hussain, Shahid</creator><creator>Li, Jinliang</creator><creator>Shah, Syed Shoaib Ahmad</creator><creator>Abbas, Yasir</creator><creator>Ahmad, Muhammad Ashfaq</creator><creator>Raza, Rizwan</creator><creator>Mai, Wenjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2771-0251</orcidid><orcidid>https://orcid.org/0000-0003-1741-6048</orcidid><orcidid>https://orcid.org/0000-0003-0599-3630</orcidid><orcidid>https://orcid.org/0000-0002-2200-5123</orcidid><orcidid>https://orcid.org/0000-0003-4363-2799</orcidid></search><sort><creationdate>2019</creationdate><title>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</title><author>Javed, Muhammad Sufyan ; Shaheen, Nusrat ; Hussain, Shahid ; Li, Jinliang ; Shah, Syed Shoaib Ahmad ; Abbas, Yasir ; Ahmad, Muhammad Ashfaq ; Raza, Rizwan ; Mai, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-423289f6b775ad9830fea4c8700d1614e3019b89f88430eb9870f8b1084b05173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous electrolytes</topic><topic>Bimetals</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Carbonaceous materials</topic><topic>Cloth</topic><topic>Cobalt</topic><topic>Current density</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Lithium chloride</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nanosheets</topic><topic>Oxides</topic><topic>Polyhedra</topic><topic>Potassium chloride</topic><topic>Sodium chloride</topic><topic>Stability</topic><topic>Substrates</topic><topic>Supercapacitors</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Muhammad Sufyan</creatorcontrib><creatorcontrib>Shaheen, Nusrat</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Li, Jinliang</creatorcontrib><creatorcontrib>Shah, Syed Shoaib Ahmad</creatorcontrib><creatorcontrib>Abbas, Yasir</creatorcontrib><creatorcontrib>Ahmad, Muhammad Ashfaq</creatorcontrib><creatorcontrib>Raza, Rizwan</creatorcontrib><creatorcontrib>Mai, Wenjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javed, Muhammad Sufyan</au><au>Shaheen, Nusrat</au><au>Hussain, Shahid</au><au>Li, Jinliang</au><au>Shah, Syed Shoaib Ahmad</au><au>Abbas, Yasir</au><au>Ahmad, Muhammad Ashfaq</au><au>Raza, Rizwan</au><au>Mai, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>946</spage><epage>957</epage><pages>946-957</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Flexible supercapacitors (SCs) are an emergent and promising technology for next-generation energy storage devices. However, low energy densities hindered their practical applications. Two-dimensional (2D) nanosheets can exhibit excellent electrochemical charge storage properties due to their short ion-diffusion distance and rich electroactive sites with multiple valence states. Herein, we report the direct growth of mesoporous 2D zinc cobaltite nanosheets on a flexible carbon cloth substrate (Zn–Co–O@CC) with an average thickness of ∼45 nm by a facile hydrothermal method at low temperature. The Zn–Co–O@CC electrode displays a high capacitance of 1750, 1573.65 and 1434.37 F g −1 at a current density of 1.5 A g −1 in LiCl, NaCl and KCl neutral aqueous electrolytes, respectively, with excellent rate capabilities at high current densities and demonstrates good cycling stability (&gt;94%) for up to 5000 cycles. Moreover, highly flexible asymmetric supercapacitor (ASC) devices have been fabricated using Zn–Co–O@CC as a positive electrode and bimetallic organic framework (MOF)-derived nanoporous carbon polyhedra (NPC@CC) as a negative electrode (Zn–Co–O@CC//NPC@CC). The as-fabricated ASC can operate at a large potential window of 0.0–2.0 V and shows outstanding energy storage performance by delivering an ultra-high energy density of 117.92 W h kg −1 at a power density of 1490.4 W kg −1 with a cycling stability of 94% after 5000 charge/discharge cycles. To the best of our knowledge, the achieved energy storage performance of the ASC device is very competitive and the highest among all binary metal oxides, carbonaceous materials, and MXene-based SCs and ASCs to date. The applied strategy to fabricate SCs is capable of enhancing both electrochemical activity and cycling stability, and can be readily applied to other metal oxide-based SCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA08816K</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2771-0251</orcidid><orcidid>https://orcid.org/0000-0003-1741-6048</orcidid><orcidid>https://orcid.org/0000-0003-0599-3630</orcidid><orcidid>https://orcid.org/0000-0002-2200-5123</orcidid><orcidid>https://orcid.org/0000-0003-4363-2799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.946-957
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2167169979
source Royal Society Of Chemistry Journals 2008-
subjects Aqueous electrolytes
Bimetals
Capacitance
Carbon
Carbonaceous materials
Cloth
Cobalt
Current density
Cycles
Electrochemistry
Electrodes
Energy
Energy storage
Flux density
Lithium chloride
Low temperature
Metal oxides
Metal-organic frameworks
Metals
Nanosheets
Oxides
Polyhedra
Potassium chloride
Sodium chloride
Stability
Substrates
Supercapacitors
Zinc
title An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-high%20energy%20density%20flexible%20asymmetric%20supercapacitor%20based%20on%20hierarchical%20fabric%20decorated%20with%202D%20bimetallic%20oxide%20nanosheets%20and%20MOF-derived%20porous%20carbon%20polyhedra&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Javed,%20Muhammad%20Sufyan&rft.date=2019&rft.volume=7&rft.issue=3&rft.spage=946&rft.epage=957&rft.pages=946-957&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA08816K&rft_dat=%3Cproquest_cross%3E2167169979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167169979&rft_id=info:pmid/&rfr_iscdi=true