Simple derivation of Newtonian mechanics from the principle of least action

We present a method for introducing students to the classical principle of least action, using a novel approach based on the ordinary calculus of one variable. We define the classical action for a path and draw the connection between it and Newton’s laws for a free particle and for a particle in a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2003-04, Vol.71 (4), p.386-391
Hauptverfasser: Hanc, Jozef, Tuleja, Slavomir, Hancova, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 4
container_start_page 386
container_title American journal of physics
container_volume 71
creator Hanc, Jozef
Tuleja, Slavomir
Hancova, Martina
description We present a method for introducing students to the classical principle of least action, using a novel approach based on the ordinary calculus of one variable. We define the classical action for a path and draw the connection between it and Newton’s laws for a free particle and for a particle in a conservative potential. The use of software to help students visualize the principle of least action and analyze rectilinear motion is discussed. We also briefly discuss the origin of the principle of least action in Feynman’s sum over paths formulation of quantum mechanics.
doi_str_mv 10.1119/1.1528915
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_216706232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>320708161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e72f51c456dfb59d38d2eefb1edd51dd03ce86f1660c6115715d72e41f2a67b63</originalsourceid><addsrcrecordid>eNqd0EtLAzEQB_AgCtbHwW8QvClszWQ32c1Rii8selDPIU0mNKW7qcm24rd3awvePQ0Dv3nwJ-QC2BgA1A2MQfBGgTggI1BVWXDF1CEZMcZ4oQQTx-Qk58XQKmjYiDy_hXa1ROowhY3pQ-xo9PQFv_rYBdPRFu3cdMFm6lNsaT9Hukqhs2E7NMglmtxTY7eTZ-TIm2XG8309JR_3d--Tx2L6-vA0uZ0WtuRVX2DNvQBbCen8TChXNo4j-hmgcwKcY6XFRnqQklkJIGoQruZYgedG1jNZnpLL3d5Vip9rzL1exHXqhpOag6yZ5CUf0NUO2RRzTuj18Hdr0rcGprdRadD7qAZ7vbPZhv43hP_hTUx_UK-cL38Alm93UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216706232</pqid></control><display><type>article</type><title>Simple derivation of Newtonian mechanics from the principle of least action</title><source>American Institute of Physics (AIP) Journals</source><creator>Hanc, Jozef ; Tuleja, Slavomir ; Hancova, Martina</creator><creatorcontrib>Hanc, Jozef ; Tuleja, Slavomir ; Hancova, Martina</creatorcontrib><description>We present a method for introducing students to the classical principle of least action, using a novel approach based on the ordinary calculus of one variable. We define the classical action for a path and draw the connection between it and Newton’s laws for a free particle and for a particle in a conservative potential. The use of software to help students visualize the principle of least action and analyze rectilinear motion is discussed. We also briefly discuss the origin of the principle of least action in Feynman’s sum over paths formulation of quantum mechanics.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.1528915</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Kinetics ; Methods ; Physics</subject><ispartof>American journal of physics, 2003-04, Vol.71 (4), p.386-391</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e72f51c456dfb59d38d2eefb1edd51dd03ce86f1660c6115715d72e41f2a67b63</citedby><cites>FETCH-LOGICAL-c324t-e72f51c456dfb59d38d2eefb1edd51dd03ce86f1660c6115715d72e41f2a67b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/1.1528915$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Hanc, Jozef</creatorcontrib><creatorcontrib>Tuleja, Slavomir</creatorcontrib><creatorcontrib>Hancova, Martina</creatorcontrib><title>Simple derivation of Newtonian mechanics from the principle of least action</title><title>American journal of physics</title><description>We present a method for introducing students to the classical principle of least action, using a novel approach based on the ordinary calculus of one variable. We define the classical action for a path and draw the connection between it and Newton’s laws for a free particle and for a particle in a conservative potential. The use of software to help students visualize the principle of least action and analyze rectilinear motion is discussed. We also briefly discuss the origin of the principle of least action in Feynman’s sum over paths formulation of quantum mechanics.</description><subject>Kinetics</subject><subject>Methods</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQB_AgCtbHwW8QvClszWQ32c1Rii8selDPIU0mNKW7qcm24rd3awvePQ0Dv3nwJ-QC2BgA1A2MQfBGgTggI1BVWXDF1CEZMcZ4oQQTx-Qk58XQKmjYiDy_hXa1ROowhY3pQ-xo9PQFv_rYBdPRFu3cdMFm6lNsaT9Hukqhs2E7NMglmtxTY7eTZ-TIm2XG8309JR_3d--Tx2L6-vA0uZ0WtuRVX2DNvQBbCen8TChXNo4j-hmgcwKcY6XFRnqQklkJIGoQruZYgedG1jNZnpLL3d5Vip9rzL1exHXqhpOag6yZ5CUf0NUO2RRzTuj18Hdr0rcGprdRadD7qAZ7vbPZhv43hP_hTUx_UK-cL38Alm93UA</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Hanc, Jozef</creator><creator>Tuleja, Slavomir</creator><creator>Hancova, Martina</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200304</creationdate><title>Simple derivation of Newtonian mechanics from the principle of least action</title><author>Hanc, Jozef ; Tuleja, Slavomir ; Hancova, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e72f51c456dfb59d38d2eefb1edd51dd03ce86f1660c6115715d72e41f2a67b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Kinetics</topic><topic>Methods</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanc, Jozef</creatorcontrib><creatorcontrib>Tuleja, Slavomir</creatorcontrib><creatorcontrib>Hancova, Martina</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanc, Jozef</au><au>Tuleja, Slavomir</au><au>Hancova, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple derivation of Newtonian mechanics from the principle of least action</atitle><jtitle>American journal of physics</jtitle><date>2003-04</date><risdate>2003</risdate><volume>71</volume><issue>4</issue><spage>386</spage><epage>391</epage><pages>386-391</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>We present a method for introducing students to the classical principle of least action, using a novel approach based on the ordinary calculus of one variable. We define the classical action for a path and draw the connection between it and Newton’s laws for a free particle and for a particle in a conservative potential. The use of software to help students visualize the principle of least action and analyze rectilinear motion is discussed. We also briefly discuss the origin of the principle of least action in Feynman’s sum over paths formulation of quantum mechanics.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.1528915</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2003-04, Vol.71 (4), p.386-391
issn 0002-9505
1943-2909
language eng
recordid cdi_proquest_journals_216706232
source American Institute of Physics (AIP) Journals
subjects Kinetics
Methods
Physics
title Simple derivation of Newtonian mechanics from the principle of least action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20derivation%20of%20Newtonian%20mechanics%20from%20the%20principle%20of%20least%20action&rft.jtitle=American%20journal%20of%20physics&rft.au=Hanc,%20Jozef&rft.date=2003-04&rft.volume=71&rft.issue=4&rft.spage=386&rft.epage=391&rft.pages=386-391&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.1528915&rft_dat=%3Cproquest_scita%3E320708161%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216706232&rft_id=info:pmid/&rfr_iscdi=true