Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries

•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2019-01, Vol.147, p.155-166
Hauptverfasser: Martín-Martín, Leire, Gastelurrutia, Jon, Larraona, Gorka S., Antón, Raúl, del Portillo-Valdés, Luis, Gil, Iñigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue
container_start_page 155
container_title Applied thermal engineering
container_volume 147
creator Martín-Martín, Leire
Gastelurrutia, Jon
Larraona, Gorka S.
Antón, Raúl
del Portillo-Valdés, Luis
Gil, Iñigo
description •An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring. A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.
doi_str_mv 10.1016/j.applthermaleng.2018.10.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167001422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111833967X</els_id><sourcerecordid>2167001422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</originalsourceid><addsrcrecordid>eNqNUD1PwzAQtRBIlMJ_sARrgh2ncSKxoIoCUqUu3S3HObeOkjjYblH59ThqFzamO937uLuH0BMlKSW0eG5TOY5d2IPrZQfDLs0ILSOUEs6v0IyWnCWLghTXsWeLKskZpbfozvuWEJqVPJ8huxmD6c2PDMYO2Gp8ccO9HOQOehgC9icfoPdYW4eP4IJREYcOjmfRdEMcTb3Ho_0GBw2uT7gzYW8OfTJxahkCOAP-Ht1o2Xl4uNQ52q7etsuPZL15_1y-rhPFKh4SrSipZM0INGWms1JlhW4YbwjjihQ5p7QumIRpWqqmrpiGUgPUfFEWlVRsjh7PtqOzXwfwQbT24Ia4UWS04PH9PMsi6-XMUs5670CL0ZleupOgREwJi1b8TVhMCU9oTDjKV2c5xEeOBpzwysCgoDEOVBCNNf8z-gUMbJFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167001422</pqid></control><display><type>article</type><title>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Martín-Martín, Leire ; Gastelurrutia, Jon ; Larraona, Gorka S. ; Antón, Raúl ; del Portillo-Valdés, Luis ; Gil, Iñigo</creator><creatorcontrib>Martín-Martín, Leire ; Gastelurrutia, Jon ; Larraona, Gorka S. ; Antón, Raúl ; del Portillo-Valdés, Luis ; Gil, Iñigo</creatorcontrib><description>•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring. A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2018.10.077</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ambient temperature ; Batteries ; CFD thermal modeling ; Computer simulation ; Elevation ; Forced convection ; Heat generation ; Heat generation model ; Heat transfer ; Lithium ; Lithium-ion batteries ; Lithium-ion battery pack ; Management systems ; Mathematical models ; Numerical analysis ; Numerical design of experiments ; Optimization ; Optimization analysis ; Pulse duration modulation ; Rechargeable batteries ; Response surface methodology ; Temperature sensors ; Thermal coupling ; Thermal management</subject><ispartof>Applied thermal engineering, 2019-01, Vol.147, p.155-166</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</citedby><cites>FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</cites><orcidid>0000-0002-2605-8425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2018.10.077$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Martín-Martín, Leire</creatorcontrib><creatorcontrib>Gastelurrutia, Jon</creatorcontrib><creatorcontrib>Larraona, Gorka S.</creatorcontrib><creatorcontrib>Antón, Raúl</creatorcontrib><creatorcontrib>del Portillo-Valdés, Luis</creatorcontrib><creatorcontrib>Gil, Iñigo</creatorcontrib><title>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</title><title>Applied thermal engineering</title><description>•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring. A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.</description><subject>Ambient temperature</subject><subject>Batteries</subject><subject>CFD thermal modeling</subject><subject>Computer simulation</subject><subject>Elevation</subject><subject>Forced convection</subject><subject>Heat generation</subject><subject>Heat generation model</subject><subject>Heat transfer</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery pack</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical design of experiments</subject><subject>Optimization</subject><subject>Optimization analysis</subject><subject>Pulse duration modulation</subject><subject>Rechargeable batteries</subject><subject>Response surface methodology</subject><subject>Temperature sensors</subject><subject>Thermal coupling</subject><subject>Thermal management</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUD1PwzAQtRBIlMJ_sARrgh2ncSKxoIoCUqUu3S3HObeOkjjYblH59ThqFzamO937uLuH0BMlKSW0eG5TOY5d2IPrZQfDLs0ILSOUEs6v0IyWnCWLghTXsWeLKskZpbfozvuWEJqVPJ8huxmD6c2PDMYO2Gp8ccO9HOQOehgC9icfoPdYW4eP4IJREYcOjmfRdEMcTb3Ho_0GBw2uT7gzYW8OfTJxahkCOAP-Ht1o2Xl4uNQ52q7etsuPZL15_1y-rhPFKh4SrSipZM0INGWms1JlhW4YbwjjihQ5p7QumIRpWqqmrpiGUgPUfFEWlVRsjh7PtqOzXwfwQbT24Ia4UWS04PH9PMsi6-XMUs5670CL0ZleupOgREwJi1b8TVhMCU9oTDjKV2c5xEeOBpzwysCgoDEOVBCNNf8z-gUMbJFw</recordid><startdate>20190125</startdate><enddate>20190125</enddate><creator>Martín-Martín, Leire</creator><creator>Gastelurrutia, Jon</creator><creator>Larraona, Gorka S.</creator><creator>Antón, Raúl</creator><creator>del Portillo-Valdés, Luis</creator><creator>Gil, Iñigo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2605-8425</orcidid></search><sort><creationdate>20190125</creationdate><title>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</title><author>Martín-Martín, Leire ; Gastelurrutia, Jon ; Larraona, Gorka S. ; Antón, Raúl ; del Portillo-Valdés, Luis ; Gil, Iñigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambient temperature</topic><topic>Batteries</topic><topic>CFD thermal modeling</topic><topic>Computer simulation</topic><topic>Elevation</topic><topic>Forced convection</topic><topic>Heat generation</topic><topic>Heat generation model</topic><topic>Heat transfer</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery pack</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical design of experiments</topic><topic>Optimization</topic><topic>Optimization analysis</topic><topic>Pulse duration modulation</topic><topic>Rechargeable batteries</topic><topic>Response surface methodology</topic><topic>Temperature sensors</topic><topic>Thermal coupling</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Martín, Leire</creatorcontrib><creatorcontrib>Gastelurrutia, Jon</creatorcontrib><creatorcontrib>Larraona, Gorka S.</creatorcontrib><creatorcontrib>Antón, Raúl</creatorcontrib><creatorcontrib>del Portillo-Valdés, Luis</creatorcontrib><creatorcontrib>Gil, Iñigo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Martín, Leire</au><au>Gastelurrutia, Jon</au><au>Larraona, Gorka S.</au><au>Antón, Raúl</au><au>del Portillo-Valdés, Luis</au><au>Gil, Iñigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-01-25</date><risdate>2019</risdate><volume>147</volume><spage>155</spage><epage>166</epage><pages>155-166</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring. A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2018.10.077</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2605-8425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-01, Vol.147, p.155-166
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2167001422
source Elsevier ScienceDirect Journals
subjects Ambient temperature
Batteries
CFD thermal modeling
Computer simulation
Elevation
Forced convection
Heat generation
Heat generation model
Heat transfer
Lithium
Lithium-ion batteries
Lithium-ion battery pack
Management systems
Mathematical models
Numerical analysis
Numerical design of experiments
Optimization
Optimization analysis
Pulse duration modulation
Rechargeable batteries
Response surface methodology
Temperature sensors
Thermal coupling
Thermal management
title Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20thermal%20management%20systems%20for%20vertical%20elevation%20applications%20powered%20by%20lithium-ion%20batteries&rft.jtitle=Applied%20thermal%20engineering&rft.au=Mart%C3%ADn-Mart%C3%ADn,%20Leire&rft.date=2019-01-25&rft.volume=147&rft.spage=155&rft.epage=166&rft.pages=155-166&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2018.10.077&rft_dat=%3Cproquest_cross%3E2167001422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167001422&rft_id=info:pmid/&rft_els_id=S135943111833967X&rfr_iscdi=true