Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries
•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2019-01, Vol.147, p.155-166 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | |
container_start_page | 155 |
container_title | Applied thermal engineering |
container_volume | 147 |
creator | Martín-Martín, Leire Gastelurrutia, Jon Larraona, Gorka S. Antón, Raúl del Portillo-Valdés, Luis Gil, Iñigo |
description | •An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring.
A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations. |
doi_str_mv | 10.1016/j.applthermaleng.2018.10.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167001422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111833967X</els_id><sourcerecordid>2167001422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</originalsourceid><addsrcrecordid>eNqNUD1PwzAQtRBIlMJ_sARrgh2ncSKxoIoCUqUu3S3HObeOkjjYblH59ThqFzamO937uLuH0BMlKSW0eG5TOY5d2IPrZQfDLs0ILSOUEs6v0IyWnCWLghTXsWeLKskZpbfozvuWEJqVPJ8huxmD6c2PDMYO2Gp8ccO9HOQOehgC9icfoPdYW4eP4IJREYcOjmfRdEMcTb3Ho_0GBw2uT7gzYW8OfTJxahkCOAP-Ht1o2Xl4uNQ52q7etsuPZL15_1y-rhPFKh4SrSipZM0INGWms1JlhW4YbwjjihQ5p7QumIRpWqqmrpiGUgPUfFEWlVRsjh7PtqOzXwfwQbT24Ia4UWS04PH9PMsi6-XMUs5670CL0ZleupOgREwJi1b8TVhMCU9oTDjKV2c5xEeOBpzwysCgoDEOVBCNNf8z-gUMbJFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167001422</pqid></control><display><type>article</type><title>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Martín-Martín, Leire ; Gastelurrutia, Jon ; Larraona, Gorka S. ; Antón, Raúl ; del Portillo-Valdés, Luis ; Gil, Iñigo</creator><creatorcontrib>Martín-Martín, Leire ; Gastelurrutia, Jon ; Larraona, Gorka S. ; Antón, Raúl ; del Portillo-Valdés, Luis ; Gil, Iñigo</creatorcontrib><description>•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring.
A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2018.10.077</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ambient temperature ; Batteries ; CFD thermal modeling ; Computer simulation ; Elevation ; Forced convection ; Heat generation ; Heat generation model ; Heat transfer ; Lithium ; Lithium-ion batteries ; Lithium-ion battery pack ; Management systems ; Mathematical models ; Numerical analysis ; Numerical design of experiments ; Optimization ; Optimization analysis ; Pulse duration modulation ; Rechargeable batteries ; Response surface methodology ; Temperature sensors ; Thermal coupling ; Thermal management</subject><ispartof>Applied thermal engineering, 2019-01, Vol.147, p.155-166</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</citedby><cites>FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</cites><orcidid>0000-0002-2605-8425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2018.10.077$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Martín-Martín, Leire</creatorcontrib><creatorcontrib>Gastelurrutia, Jon</creatorcontrib><creatorcontrib>Larraona, Gorka S.</creatorcontrib><creatorcontrib>Antón, Raúl</creatorcontrib><creatorcontrib>del Portillo-Valdés, Luis</creatorcontrib><creatorcontrib>Gil, Iñigo</creatorcontrib><title>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</title><title>Applied thermal engineering</title><description>•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring.
A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.</description><subject>Ambient temperature</subject><subject>Batteries</subject><subject>CFD thermal modeling</subject><subject>Computer simulation</subject><subject>Elevation</subject><subject>Forced convection</subject><subject>Heat generation</subject><subject>Heat generation model</subject><subject>Heat transfer</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery pack</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical design of experiments</subject><subject>Optimization</subject><subject>Optimization analysis</subject><subject>Pulse duration modulation</subject><subject>Rechargeable batteries</subject><subject>Response surface methodology</subject><subject>Temperature sensors</subject><subject>Thermal coupling</subject><subject>Thermal management</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUD1PwzAQtRBIlMJ_sARrgh2ncSKxoIoCUqUu3S3HObeOkjjYblH59ThqFzamO937uLuH0BMlKSW0eG5TOY5d2IPrZQfDLs0ILSOUEs6v0IyWnCWLghTXsWeLKskZpbfozvuWEJqVPJ8huxmD6c2PDMYO2Gp8ccO9HOQOehgC9icfoPdYW4eP4IJREYcOjmfRdEMcTb3Ho_0GBw2uT7gzYW8OfTJxahkCOAP-Ht1o2Xl4uNQ52q7etsuPZL15_1y-rhPFKh4SrSipZM0INGWms1JlhW4YbwjjihQ5p7QumIRpWqqmrpiGUgPUfFEWlVRsjh7PtqOzXwfwQbT24Ia4UWS04PH9PMsi6-XMUs5670CL0ZleupOgREwJi1b8TVhMCU9oTDjKV2c5xEeOBpzwysCgoDEOVBCNNf8z-gUMbJFw</recordid><startdate>20190125</startdate><enddate>20190125</enddate><creator>Martín-Martín, Leire</creator><creator>Gastelurrutia, Jon</creator><creator>Larraona, Gorka S.</creator><creator>Antón, Raúl</creator><creator>del Portillo-Valdés, Luis</creator><creator>Gil, Iñigo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2605-8425</orcidid></search><sort><creationdate>20190125</creationdate><title>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</title><author>Martín-Martín, Leire ; Gastelurrutia, Jon ; Larraona, Gorka S. ; Antón, Raúl ; del Portillo-Valdés, Luis ; Gil, Iñigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-fc109ab30ed82f28c26fd37d037c064711b63ae26fd8cdb93fe8feeb75869ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambient temperature</topic><topic>Batteries</topic><topic>CFD thermal modeling</topic><topic>Computer simulation</topic><topic>Elevation</topic><topic>Forced convection</topic><topic>Heat generation</topic><topic>Heat generation model</topic><topic>Heat transfer</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery pack</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical design of experiments</topic><topic>Optimization</topic><topic>Optimization analysis</topic><topic>Pulse duration modulation</topic><topic>Rechargeable batteries</topic><topic>Response surface methodology</topic><topic>Temperature sensors</topic><topic>Thermal coupling</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Martín, Leire</creatorcontrib><creatorcontrib>Gastelurrutia, Jon</creatorcontrib><creatorcontrib>Larraona, Gorka S.</creatorcontrib><creatorcontrib>Antón, Raúl</creatorcontrib><creatorcontrib>del Portillo-Valdés, Luis</creatorcontrib><creatorcontrib>Gil, Iñigo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Martín, Leire</au><au>Gastelurrutia, Jon</au><au>Larraona, Gorka S.</au><au>Antón, Raúl</au><au>del Portillo-Valdés, Luis</au><au>Gil, Iñigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-01-25</date><risdate>2019</risdate><volume>147</volume><spage>155</spage><epage>166</epage><pages>155-166</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•An improved cell heat generation modeling approach has been successfully used.•Transient simulations are not needed to improve the thermal performance of the system.•The best placement for the temperature sensors has been decided based on simulations.•Although the heat sinks can be removed the use of the fans is mandatory.•An optimized control strategy has been proposed based on simple monitoring.
A simple battery thermal management system's control strategy based on reliable battery-pack-level CFD models and numerical optimization methodologies is proposed for vertical elevation applications powered by lithium-ion batteries. A new devised heat generation model named as False Steady has been successfully used to calculate the heat density generated in each cell of the battery pack in a steady simulation without losing the thermal coupling and hence prediction accuracy. The best placement for the temperature sensors to evaluate the thermal dispersion has been decided based on the CFD model results. When the predefined thermal limits are crossed the fans will start operating and they will be regulated depending on the ambient temperature and the measured charge or discharge current level. The optimal values of fans' pulse width modulation level are determined from response surfaces obtained from the simulations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2018.10.077</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2605-8425</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2019-01, Vol.147, p.155-166 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_2167001422 |
source | Elsevier ScienceDirect Journals |
subjects | Ambient temperature Batteries CFD thermal modeling Computer simulation Elevation Forced convection Heat generation Heat generation model Heat transfer Lithium Lithium-ion batteries Lithium-ion battery pack Management systems Mathematical models Numerical analysis Numerical design of experiments Optimization Optimization analysis Pulse duration modulation Rechargeable batteries Response surface methodology Temperature sensors Thermal coupling Thermal management |
title | Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20thermal%20management%20systems%20for%20vertical%20elevation%20applications%20powered%20by%20lithium-ion%20batteries&rft.jtitle=Applied%20thermal%20engineering&rft.au=Mart%C3%ADn-Mart%C3%ADn,%20Leire&rft.date=2019-01-25&rft.volume=147&rft.spage=155&rft.epage=166&rft.pages=155-166&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2018.10.077&rft_dat=%3Cproquest_cross%3E2167001422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167001422&rft_id=info:pmid/&rft_els_id=S135943111833967X&rfr_iscdi=true |