Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials

The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2006-07, Vol.74 (7), p.572-577
Hauptverfasser: Larkoski, Andrew J., Ellis, David G., Curtis, Lorenzo J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 7
container_start_page 572
container_title American journal of physics
container_volume 74
creator Larkoski, Andrew J.
Ellis, David G.
Curtis, Lorenzo J.
description The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.
doi_str_mv 10.1119/1.2192788
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_216698972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1085982871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</originalsourceid><addsrcrecordid>eNqdkE1LxDAQhoMouK4e_AfFm0LXTNJ2m6Mu6wcuetGTh9CmE8jSNt0kFdxfb6QL3j29M_DwzvAQcgl0AQDiFhYMBFuW5RGZgch4ygQVx2RGKWWpyGl-Ss6838ZVQEln5PN17NAZVbWJ6YYWO-xDFYztE6uTtel9QNOn9860rR3j9IJtiy7ZjVUfzH4itXVJ5WoTXOW-k8GG2GGq1p-TEx0DLw45Jx8P6_fVU7p5e3xe3W1SxVkR0kyLIs-xERlCplXGgGmsed1QwJox3hRYUKhzjUpxzBTjKqd1g1nJNF1ywefkauodnN2N6IPc2tH18aRkUBSiFEsWoesJUs5671DLwZkuPiyByl91EuRBXWRvJtYrM9n4H_xl3R8oh0bzH0Nyftk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216698972</pqid></control><display><type>article</type><title>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</title><source>AIP Journals Complete</source><creator>Larkoski, Andrew J. ; Ellis, David G. ; Curtis, Lorenzo J.</creator><creatorcontrib>Larkoski, Andrew J. ; Ellis, David G. ; Curtis, Lorenzo J.</creatorcontrib><description>The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.2192788</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Mathematical functions ; Nonlinear equations ; Physics</subject><ispartof>American journal of physics, 2006-07, Vol.74 (7), p.572-577</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</citedby><cites>FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/1.2192788$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Larkoski, Andrew J.</creatorcontrib><creatorcontrib>Ellis, David G.</creatorcontrib><creatorcontrib>Curtis, Lorenzo J.</creatorcontrib><title>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</title><title>American journal of physics</title><description>The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.</description><subject>Mathematical functions</subject><subject>Nonlinear equations</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAQhoMouK4e_AfFm0LXTNJ2m6Mu6wcuetGTh9CmE8jSNt0kFdxfb6QL3j29M_DwzvAQcgl0AQDiFhYMBFuW5RGZgch4ygQVx2RGKWWpyGl-Ss6838ZVQEln5PN17NAZVbWJ6YYWO-xDFYztE6uTtel9QNOn9860rR3j9IJtiy7ZjVUfzH4itXVJ5WoTXOW-k8GG2GGq1p-TEx0DLw45Jx8P6_fVU7p5e3xe3W1SxVkR0kyLIs-xERlCplXGgGmsed1QwJox3hRYUKhzjUpxzBTjKqd1g1nJNF1ywefkauodnN2N6IPc2tH18aRkUBSiFEsWoesJUs5671DLwZkuPiyByl91EuRBXWRvJtYrM9n4H_xl3R8oh0bzH0Nyftk</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Larkoski, Andrew J.</creator><creator>Ellis, David G.</creator><creator>Curtis, Lorenzo J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200607</creationdate><title>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</title><author>Larkoski, Andrew J. ; Ellis, David G. ; Curtis, Lorenzo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Mathematical functions</topic><topic>Nonlinear equations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larkoski, Andrew J.</creatorcontrib><creatorcontrib>Ellis, David G.</creatorcontrib><creatorcontrib>Curtis, Lorenzo J.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larkoski, Andrew J.</au><au>Ellis, David G.</au><au>Curtis, Lorenzo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</atitle><jtitle>American journal of physics</jtitle><date>2006-07</date><risdate>2006</risdate><volume>74</volume><issue>7</issue><spage>572</spage><epage>577</epage><pages>572-577</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.2192788</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2006-07, Vol.74 (7), p.572-577
issn 0002-9505
1943-2909
language eng
recordid cdi_proquest_journals_216698972
source AIP Journals Complete
subjects Mathematical functions
Nonlinear equations
Physics
title Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20implementation%20of%20Einstein-Brillouin-Keller%20quantization%20for%20arbitrary%20potentials&rft.jtitle=American%20journal%20of%20physics&rft.au=Larkoski,%20Andrew%20J.&rft.date=2006-07&rft.volume=74&rft.issue=7&rft.spage=572&rft.epage=577&rft.pages=572-577&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.2192788&rft_dat=%3Cproquest_scita%3E1085982871%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216698972&rft_id=info:pmid/&rfr_iscdi=true