Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials
The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations...
Gespeichert in:
Veröffentlicht in: | American journal of physics 2006-07, Vol.74 (7), p.572-577 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | 7 |
container_start_page | 572 |
container_title | American journal of physics |
container_volume | 74 |
creator | Larkoski, Andrew J. Ellis, David G. Curtis, Lorenzo J. |
description | The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied. |
doi_str_mv | 10.1119/1.2192788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_216698972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1085982871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</originalsourceid><addsrcrecordid>eNqdkE1LxDAQhoMouK4e_AfFm0LXTNJ2m6Mu6wcuetGTh9CmE8jSNt0kFdxfb6QL3j29M_DwzvAQcgl0AQDiFhYMBFuW5RGZgch4ygQVx2RGKWWpyGl-Ss6838ZVQEln5PN17NAZVbWJ6YYWO-xDFYztE6uTtel9QNOn9860rR3j9IJtiy7ZjVUfzH4itXVJ5WoTXOW-k8GG2GGq1p-TEx0DLw45Jx8P6_fVU7p5e3xe3W1SxVkR0kyLIs-xERlCplXGgGmsed1QwJox3hRYUKhzjUpxzBTjKqd1g1nJNF1ywefkauodnN2N6IPc2tH18aRkUBSiFEsWoesJUs5671DLwZkuPiyByl91EuRBXWRvJtYrM9n4H_xl3R8oh0bzH0Nyftk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216698972</pqid></control><display><type>article</type><title>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</title><source>AIP Journals Complete</source><creator>Larkoski, Andrew J. ; Ellis, David G. ; Curtis, Lorenzo J.</creator><creatorcontrib>Larkoski, Andrew J. ; Ellis, David G. ; Curtis, Lorenzo J.</creatorcontrib><description>The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.2192788</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Mathematical functions ; Nonlinear equations ; Physics</subject><ispartof>American journal of physics, 2006-07, Vol.74 (7), p.572-577</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</citedby><cites>FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/1.2192788$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Larkoski, Andrew J.</creatorcontrib><creatorcontrib>Ellis, David G.</creatorcontrib><creatorcontrib>Curtis, Lorenzo J.</creatorcontrib><title>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</title><title>American journal of physics</title><description>The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.</description><subject>Mathematical functions</subject><subject>Nonlinear equations</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAQhoMouK4e_AfFm0LXTNJ2m6Mu6wcuetGTh9CmE8jSNt0kFdxfb6QL3j29M_DwzvAQcgl0AQDiFhYMBFuW5RGZgch4ygQVx2RGKWWpyGl-Ss6838ZVQEln5PN17NAZVbWJ6YYWO-xDFYztE6uTtel9QNOn9860rR3j9IJtiy7ZjVUfzH4itXVJ5WoTXOW-k8GG2GGq1p-TEx0DLw45Jx8P6_fVU7p5e3xe3W1SxVkR0kyLIs-xERlCplXGgGmsed1QwJox3hRYUKhzjUpxzBTjKqd1g1nJNF1ywefkauodnN2N6IPc2tH18aRkUBSiFEsWoesJUs5671DLwZkuPiyByl91EuRBXWRvJtYrM9n4H_xl3R8oh0bzH0Nyftk</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Larkoski, Andrew J.</creator><creator>Ellis, David G.</creator><creator>Curtis, Lorenzo J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200607</creationdate><title>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</title><author>Larkoski, Andrew J. ; Ellis, David G. ; Curtis, Lorenzo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-4f9655ed94e14fc4212feb3bd01eb223d6e601b5fecc3e4c23c50bde482f07393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Mathematical functions</topic><topic>Nonlinear equations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larkoski, Andrew J.</creatorcontrib><creatorcontrib>Ellis, David G.</creatorcontrib><creatorcontrib>Curtis, Lorenzo J.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larkoski, Andrew J.</au><au>Ellis, David G.</au><au>Curtis, Lorenzo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials</atitle><jtitle>American journal of physics</jtitle><date>2006-07</date><risdate>2006</risdate><volume>74</volume><issue>7</issue><spage>572</spage><epage>577</epage><pages>572-577</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The Einstein-Brillouin-Keller (EBK) quantization equation is used to determine the energy levels of a two-body system with an arbitrary central potential that allows for bound states. The treatment is based on the conservation laws and avoids both the Newtonian and Schrödinger differential equations. Because analytic solutions for the energy levels do not exist in general, the EBK condition is applied using the Newton-Raphson method and the radial probability density is computed. Potentials appropriate for a diatomic molecule are considered and the effect of the angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of closed orbits is studied.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.2192788</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American journal of physics, 2006-07, Vol.74 (7), p.572-577 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_proquest_journals_216698972 |
source | AIP Journals Complete |
subjects | Mathematical functions Nonlinear equations Physics |
title | Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20implementation%20of%20Einstein-Brillouin-Keller%20quantization%20for%20arbitrary%20potentials&rft.jtitle=American%20journal%20of%20physics&rft.au=Larkoski,%20Andrew%20J.&rft.date=2006-07&rft.volume=74&rft.issue=7&rft.spage=572&rft.epage=577&rft.pages=572-577&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.2192788&rft_dat=%3Cproquest_scita%3E1085982871%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216698972&rft_id=info:pmid/&rfr_iscdi=true |