A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors
Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2019-01, Vol.304 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Macromolecular materials and engineering |
container_volume | 304 |
creator | Yuan, Yihui Yuan, Jun Tan, Huiyan Song, Xiaodong Tu, Yaqing Zhang, Ting Han, Huijing Huang, Wei Huang, Xinhua Zhang, Lidong |
description | Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls.
A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. |
doi_str_mv | 10.1002/mame.201800501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166968647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166968647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</originalsourceid><addsrcrecordid>eNqFkNFLwzAQh4MoOKevPgd87kzSNO09lm06YaLg9DWkabJ1tMtMWqX_vZ0TffTpjuP33R0fQteUTCgh7LZRjZkwQjNCEkJP0IjyGCJGEn763WdRyoGdo4sQtoTQNIN4hGY5XlTrTd3jl9abVm9UURu8ct16g59d3TfG41y3nWqdxzNffZgdLvphZFq3M_hN7Z0Pl-jMqjqYq586Rq9389V0ES2f7h-m-TLSMXAaJWAggeE5UaRFbCloaoWhWVkqyzTjQETGUguqiEurrUqoNkVZggVRasV4PEY3x7177947E1q5dZ3fDSclo0KAyARPh9TkmNLeheCNlXtfNcr3khJ5MCUPpuSvqQGAI_BZ1ab_Jy0f88f5H_sFEXRsuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166968647</pqid></control><display><type>article</type><title>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</title><source>Wiley Online Library All Journals</source><creator>Yuan, Yihui ; Yuan, Jun ; Tan, Huiyan ; Song, Xiaodong ; Tu, Yaqing ; Zhang, Ting ; Han, Huijing ; Huang, Wei ; Huang, Xinhua ; Zhang, Lidong</creator><creatorcontrib>Yuan, Yihui ; Yuan, Jun ; Tan, Huiyan ; Song, Xiaodong ; Tu, Yaqing ; Zhang, Ting ; Han, Huijing ; Huang, Wei ; Huang, Xinhua ; Zhang, Lidong</creatorcontrib><description>Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls.
A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201800501</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Acetone ; Actuators ; Artificial muscles ; Deactivation ; Energy conversion ; Kinematics ; Mechanical properties ; microscopic patterning ; motility ; Polymers ; Polyvinylidene fluorides ; Robotics ; smart materials ; Stretchability ; Stretching ; Toys ; vapomechanical response ; Vinylidene fluoride</subject><ispartof>Macromolecular materials and engineering, 2019-01, Vol.304 (1), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</citedby><cites>FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</cites><orcidid>0000-0002-0501-6162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201800501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201800501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yuan, Yihui</creatorcontrib><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Tan, Huiyan</creatorcontrib><creatorcontrib>Song, Xiaodong</creatorcontrib><creatorcontrib>Tu, Yaqing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Han, Huijing</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Huang, Xinhua</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><title>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</title><title>Macromolecular materials and engineering</title><description>Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls.
A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.</description><subject>Acetone</subject><subject>Actuators</subject><subject>Artificial muscles</subject><subject>Deactivation</subject><subject>Energy conversion</subject><subject>Kinematics</subject><subject>Mechanical properties</subject><subject>microscopic patterning</subject><subject>motility</subject><subject>Polymers</subject><subject>Polyvinylidene fluorides</subject><subject>Robotics</subject><subject>smart materials</subject><subject>Stretchability</subject><subject>Stretching</subject><subject>Toys</subject><subject>vapomechanical response</subject><subject>Vinylidene fluoride</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQh4MoOKevPgd87kzSNO09lm06YaLg9DWkabJ1tMtMWqX_vZ0TffTpjuP33R0fQteUTCgh7LZRjZkwQjNCEkJP0IjyGCJGEn763WdRyoGdo4sQtoTQNIN4hGY5XlTrTd3jl9abVm9UURu8ct16g59d3TfG41y3nWqdxzNffZgdLvphZFq3M_hN7Z0Pl-jMqjqYq586Rq9389V0ES2f7h-m-TLSMXAaJWAggeE5UaRFbCloaoWhWVkqyzTjQETGUguqiEurrUqoNkVZggVRasV4PEY3x7177947E1q5dZ3fDSclo0KAyARPh9TkmNLeheCNlXtfNcr3khJ5MCUPpuSvqQGAI_BZ1ab_Jy0f88f5H_sFEXRsuA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Yuan, Yihui</creator><creator>Yuan, Jun</creator><creator>Tan, Huiyan</creator><creator>Song, Xiaodong</creator><creator>Tu, Yaqing</creator><creator>Zhang, Ting</creator><creator>Han, Huijing</creator><creator>Huang, Wei</creator><creator>Huang, Xinhua</creator><creator>Zhang, Lidong</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0501-6162</orcidid></search><sort><creationdate>201901</creationdate><title>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</title><author>Yuan, Yihui ; Yuan, Jun ; Tan, Huiyan ; Song, Xiaodong ; Tu, Yaqing ; Zhang, Ting ; Han, Huijing ; Huang, Wei ; Huang, Xinhua ; Zhang, Lidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Actuators</topic><topic>Artificial muscles</topic><topic>Deactivation</topic><topic>Energy conversion</topic><topic>Kinematics</topic><topic>Mechanical properties</topic><topic>microscopic patterning</topic><topic>motility</topic><topic>Polymers</topic><topic>Polyvinylidene fluorides</topic><topic>Robotics</topic><topic>smart materials</topic><topic>Stretchability</topic><topic>Stretching</topic><topic>Toys</topic><topic>vapomechanical response</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yihui</creatorcontrib><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Tan, Huiyan</creatorcontrib><creatorcontrib>Song, Xiaodong</creatorcontrib><creatorcontrib>Tu, Yaqing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Han, Huijing</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Huang, Xinhua</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yihui</au><au>Yuan, Jun</au><au>Tan, Huiyan</au><au>Song, Xiaodong</au><au>Tu, Yaqing</au><au>Zhang, Ting</au><au>Han, Huijing</au><au>Huang, Wei</au><au>Huang, Xinhua</au><au>Zhang, Lidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2019-01</date><risdate>2019</risdate><volume>304</volume><issue>1</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls.
A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mame.201800501</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0501-6162</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2019-01, Vol.304 (1), p.n/a |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_journals_2166968647 |
source | Wiley Online Library All Journals |
subjects | Acetone Actuators Artificial muscles Deactivation Energy conversion Kinematics Mechanical properties microscopic patterning motility Polymers Polyvinylidene fluorides Robotics smart materials Stretchability Stretching Toys vapomechanical response Vinylidene fluoride |
title | A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Stretchable%20Tough%20Polymer%20Actuator%20Driven%20by%20Acetone%20Vapors&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Yuan,%20Yihui&rft.date=2019-01&rft.volume=304&rft.issue=1&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201800501&rft_dat=%3Cproquest_cross%3E2166968647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166968647&rft_id=info:pmid/&rfr_iscdi=true |