A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors

Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2019-01, Vol.304 (1), p.n/a
Hauptverfasser: Yuan, Yihui, Yuan, Jun, Tan, Huiyan, Song, Xiaodong, Tu, Yaqing, Zhang, Ting, Han, Huijing, Huang, Wei, Huang, Xinhua, Zhang, Lidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Macromolecular materials and engineering
container_volume 304
creator Yuan, Yihui
Yuan, Jun
Tan, Huiyan
Song, Xiaodong
Tu, Yaqing
Zhang, Ting
Han, Huijing
Huang, Wei
Huang, Xinhua
Zhang, Lidong
description Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls. A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.
doi_str_mv 10.1002/mame.201800501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166968647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166968647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</originalsourceid><addsrcrecordid>eNqFkNFLwzAQh4MoOKevPgd87kzSNO09lm06YaLg9DWkabJ1tMtMWqX_vZ0TffTpjuP33R0fQteUTCgh7LZRjZkwQjNCEkJP0IjyGCJGEn763WdRyoGdo4sQtoTQNIN4hGY5XlTrTd3jl9abVm9UURu8ct16g59d3TfG41y3nWqdxzNffZgdLvphZFq3M_hN7Z0Pl-jMqjqYq586Rq9389V0ES2f7h-m-TLSMXAaJWAggeE5UaRFbCloaoWhWVkqyzTjQETGUguqiEurrUqoNkVZggVRasV4PEY3x7177947E1q5dZ3fDSclo0KAyARPh9TkmNLeheCNlXtfNcr3khJ5MCUPpuSvqQGAI_BZ1ab_Jy0f88f5H_sFEXRsuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166968647</pqid></control><display><type>article</type><title>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</title><source>Wiley Online Library All Journals</source><creator>Yuan, Yihui ; Yuan, Jun ; Tan, Huiyan ; Song, Xiaodong ; Tu, Yaqing ; Zhang, Ting ; Han, Huijing ; Huang, Wei ; Huang, Xinhua ; Zhang, Lidong</creator><creatorcontrib>Yuan, Yihui ; Yuan, Jun ; Tan, Huiyan ; Song, Xiaodong ; Tu, Yaqing ; Zhang, Ting ; Han, Huijing ; Huang, Wei ; Huang, Xinhua ; Zhang, Lidong</creatorcontrib><description>Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls. A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201800501</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Acetone ; Actuators ; Artificial muscles ; Deactivation ; Energy conversion ; Kinematics ; Mechanical properties ; microscopic patterning ; motility ; Polymers ; Polyvinylidene fluorides ; Robotics ; smart materials ; Stretchability ; Stretching ; Toys ; vapomechanical response ; Vinylidene fluoride</subject><ispartof>Macromolecular materials and engineering, 2019-01, Vol.304 (1), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</citedby><cites>FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</cites><orcidid>0000-0002-0501-6162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201800501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201800501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yuan, Yihui</creatorcontrib><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Tan, Huiyan</creatorcontrib><creatorcontrib>Song, Xiaodong</creatorcontrib><creatorcontrib>Tu, Yaqing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Han, Huijing</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Huang, Xinhua</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><title>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</title><title>Macromolecular materials and engineering</title><description>Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls. A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.</description><subject>Acetone</subject><subject>Actuators</subject><subject>Artificial muscles</subject><subject>Deactivation</subject><subject>Energy conversion</subject><subject>Kinematics</subject><subject>Mechanical properties</subject><subject>microscopic patterning</subject><subject>motility</subject><subject>Polymers</subject><subject>Polyvinylidene fluorides</subject><subject>Robotics</subject><subject>smart materials</subject><subject>Stretchability</subject><subject>Stretching</subject><subject>Toys</subject><subject>vapomechanical response</subject><subject>Vinylidene fluoride</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQh4MoOKevPgd87kzSNO09lm06YaLg9DWkabJ1tMtMWqX_vZ0TffTpjuP33R0fQteUTCgh7LZRjZkwQjNCEkJP0IjyGCJGEn763WdRyoGdo4sQtoTQNIN4hGY5XlTrTd3jl9abVm9UURu8ct16g59d3TfG41y3nWqdxzNffZgdLvphZFq3M_hN7Z0Pl-jMqjqYq586Rq9389V0ES2f7h-m-TLSMXAaJWAggeE5UaRFbCloaoWhWVkqyzTjQETGUguqiEurrUqoNkVZggVRasV4PEY3x7177947E1q5dZ3fDSclo0KAyARPh9TkmNLeheCNlXtfNcr3khJ5MCUPpuSvqQGAI_BZ1ab_Jy0f88f5H_sFEXRsuA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Yuan, Yihui</creator><creator>Yuan, Jun</creator><creator>Tan, Huiyan</creator><creator>Song, Xiaodong</creator><creator>Tu, Yaqing</creator><creator>Zhang, Ting</creator><creator>Han, Huijing</creator><creator>Huang, Wei</creator><creator>Huang, Xinhua</creator><creator>Zhang, Lidong</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0501-6162</orcidid></search><sort><creationdate>201901</creationdate><title>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</title><author>Yuan, Yihui ; Yuan, Jun ; Tan, Huiyan ; Song, Xiaodong ; Tu, Yaqing ; Zhang, Ting ; Han, Huijing ; Huang, Wei ; Huang, Xinhua ; Zhang, Lidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3941-59e9590506b7b3f19c1f6e18ddaf2c24906827f9ab3dfcfa51cebdd9f96dca243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Actuators</topic><topic>Artificial muscles</topic><topic>Deactivation</topic><topic>Energy conversion</topic><topic>Kinematics</topic><topic>Mechanical properties</topic><topic>microscopic patterning</topic><topic>motility</topic><topic>Polymers</topic><topic>Polyvinylidene fluorides</topic><topic>Robotics</topic><topic>smart materials</topic><topic>Stretchability</topic><topic>Stretching</topic><topic>Toys</topic><topic>vapomechanical response</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yihui</creatorcontrib><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Tan, Huiyan</creatorcontrib><creatorcontrib>Song, Xiaodong</creatorcontrib><creatorcontrib>Tu, Yaqing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Han, Huijing</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Huang, Xinhua</creatorcontrib><creatorcontrib>Zhang, Lidong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yihui</au><au>Yuan, Jun</au><au>Tan, Huiyan</au><au>Song, Xiaodong</au><au>Tu, Yaqing</au><au>Zhang, Ting</au><au>Han, Huijing</au><au>Huang, Wei</au><au>Huang, Xinhua</au><au>Zhang, Lidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2019-01</date><risdate>2019</risdate><volume>304</volume><issue>1</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Stimuli‐responsive polymer materials having high stretchability and robust toughness are more promising for applications in wearable electronics, soft robotics, and sensors. Herein, a micropatterned single‐layered polymer soft actuator is reported that can be stretched to 600% of its original length with the strength reaching 40 MPa. The prominent mechanical stretchability comes from the modification of poly(vinylidene fluoride) (PVDF) by using 3‐methacryloxypropyltrimethoxysilane (MS), followed by the treatment with mechanical uniaxial stretching. The uniaxial stretching induces microscopic patterning of the PVDF/MS composite actuator, making it capable of kinematics‐controllable movements in response to acetone vapors. The mechanically strong single‐layered vaporesponsive PVDF/MS actuator overcomes many drawbacks of polymer bilayer actuators that might undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties. Driven by acetone vapors, the PVDF/MS actuator demonstrates highly efficient energy conversion and sensing abilities with simulating artificial muscles for inducing the movements of various paper dolls. A micropatterned single‐layered polymer soft actuator is reported. The actuator is capable of kinematics‐controllable movements in response to acetone vapors, and overcomes many drawbacks of polymer bilayer actuators that may undergo interfacial failure and inactivation caused by less‐than‐perfect mechanical properties.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mame.201800501</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0501-6162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2019-01, Vol.304 (1), p.n/a
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_journals_2166968647
source Wiley Online Library All Journals
subjects Acetone
Actuators
Artificial muscles
Deactivation
Energy conversion
Kinematics
Mechanical properties
microscopic patterning
motility
Polymers
Polyvinylidene fluorides
Robotics
smart materials
Stretchability
Stretching
Toys
vapomechanical response
Vinylidene fluoride
title A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Stretchable%20Tough%20Polymer%20Actuator%20Driven%20by%20Acetone%20Vapors&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Yuan,%20Yihui&rft.date=2019-01&rft.volume=304&rft.issue=1&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201800501&rft_dat=%3Cproquest_cross%3E2166968647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166968647&rft_id=info:pmid/&rfr_iscdi=true