Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound

In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2019-03, Vol.67 (5), p.1175-1190
Hauptverfasser: Phan, Anh-Huy, Tichavsky, Petr, Cichocki, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 5
container_start_page 1175
container_title IEEE transactions on signal processing
container_volume 67
creator Phan, Anh-Huy
Tichavsky, Petr
Cichocki, Andrzej
description In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.
doi_str_mv 10.1109/TSP.2018.2887192
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2166850974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8579207</ieee_id><sourcerecordid>2166850974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMks2Ht1rrB1QsWsFb2E1n6xbd1GQr-O_dssXTDMzzvgMPIefARgDMXi1e5yPOwIy4MRosPyADsBIyJrU67HaWiyw3-v2YnKS0ZgyktGpAXqYxhkjnERPGn7pZ0UmIEX1bh-aajukTth9hSauOmczpLfrwtQmp3p1p0dKCLoq4wpb2NTdh2yxPyVFVfCY8288hebubLiYP2ez5_nEynmWeW2gzLoGVapmXgpesyo0ttfJKlKYCWaIvQOSsEJqXnqM1gCiVEejRojZacCOG5LLv3cTwvcXUunXYxqZ76TgoZXJmtewo1lM-hpQiVm4T668i_jpgbmfOdebczpzbm-siF32kRsR_3OTacqbFH2wzaLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166850974</pqid></control><display><type>article</type><title>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</title><source>IEEE Electronic Library (IEL)</source><creator>Phan, Anh-Huy ; Tichavsky, Petr ; Cichocki, Andrzej</creator><creatorcontrib>Phan, Anh-Huy ; Tichavsky, Petr ; Cichocki, Andrzej</creatorcontrib><description>In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2887192</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Artificial neural networks ; bounded CPD ; Canonical polyadic decomposition (CPD) ; Convergence ; Decomposition ; degeneracy ; Error correction ; Mathematical analysis ; Matrix decomposition ; Noise reduction ; Norms ; PARAFAC ; Quadratic programming ; Signal processing algorithms ; tensor decomposition for ill conditioned problems ; Tensors ; Weight</subject><ispartof>IEEE transactions on signal processing, 2019-03, Vol.67 (5), p.1175-1190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</citedby><cites>FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</cites><orcidid>0000-0002-8364-7226 ; 0000-0003-0621-4766 ; 0000-0002-5509-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8579207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8579207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phan, Anh-Huy</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><title>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Artificial neural networks</subject><subject>bounded CPD</subject><subject>Canonical polyadic decomposition (CPD)</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>degeneracy</subject><subject>Error correction</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Noise reduction</subject><subject>Norms</subject><subject>PARAFAC</subject><subject>Quadratic programming</subject><subject>Signal processing algorithms</subject><subject>tensor decomposition for ill conditioned problems</subject><subject>Tensors</subject><subject>Weight</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMks2Ht1rrB1QsWsFb2E1n6xbd1GQr-O_dssXTDMzzvgMPIefARgDMXi1e5yPOwIy4MRosPyADsBIyJrU67HaWiyw3-v2YnKS0ZgyktGpAXqYxhkjnERPGn7pZ0UmIEX1bh-aajukTth9hSauOmczpLfrwtQmp3p1p0dKCLoq4wpb2NTdh2yxPyVFVfCY8288hebubLiYP2ez5_nEynmWeW2gzLoGVapmXgpesyo0ttfJKlKYCWaIvQOSsEJqXnqM1gCiVEejRojZacCOG5LLv3cTwvcXUunXYxqZ76TgoZXJmtewo1lM-hpQiVm4T668i_jpgbmfOdebczpzbm-siF32kRsR_3OTacqbFH2wzaLI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Phan, Anh-Huy</creator><creator>Tichavsky, Petr</creator><creator>Cichocki, Andrzej</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8364-7226</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-5509-7773</orcidid></search><sort><creationdate>20190301</creationdate><title>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</title><author>Phan, Anh-Huy ; Tichavsky, Petr ; Cichocki, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Artificial neural networks</topic><topic>bounded CPD</topic><topic>Canonical polyadic decomposition (CPD)</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>degeneracy</topic><topic>Error correction</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Noise reduction</topic><topic>Norms</topic><topic>PARAFAC</topic><topic>Quadratic programming</topic><topic>Signal processing algorithms</topic><topic>tensor decomposition for ill conditioned problems</topic><topic>Tensors</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Anh-Huy</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, Anh-Huy</au><au>Tichavsky, Petr</au><au>Cichocki, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>67</volume><issue>5</issue><spage>1175</spage><epage>1190</epage><pages>1175-1190</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2018.2887192</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8364-7226</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-5509-7773</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2019-03, Vol.67 (5), p.1175-1190
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2166850974
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Artificial neural networks
bounded CPD
Canonical polyadic decomposition (CPD)
Convergence
Decomposition
degeneracy
Error correction
Mathematical analysis
Matrix decomposition
Noise reduction
Norms
PARAFAC
Quadratic programming
Signal processing algorithms
tensor decomposition for ill conditioned problems
Tensors
Weight
title Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Preserving%20Correction:%20A%20Method%20for%20CP%20Decomposition%20at%20a%20Target%20Error%20Bound&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Phan,%20Anh-Huy&rft.date=2019-03-01&rft.volume=67&rft.issue=5&rft.spage=1175&rft.epage=1190&rft.pages=1175-1190&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2887192&rft_dat=%3Cproquest_RIE%3E2166850974%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166850974&rft_id=info:pmid/&rft_ieee_id=8579207&rfr_iscdi=true