Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound
In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2019-03, Vol.67 (5), p.1175-1190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1190 |
---|---|
container_issue | 5 |
container_start_page | 1175 |
container_title | IEEE transactions on signal processing |
container_volume | 67 |
creator | Phan, Anh-Huy Tichavsky, Petr Cichocki, Andrzej |
description | In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks. |
doi_str_mv | 10.1109/TSP.2018.2887192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2166850974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8579207</ieee_id><sourcerecordid>2166850974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMks2Ht1rrB1QsWsFb2E1n6xbd1GQr-O_dssXTDMzzvgMPIefARgDMXi1e5yPOwIy4MRosPyADsBIyJrU67HaWiyw3-v2YnKS0ZgyktGpAXqYxhkjnERPGn7pZ0UmIEX1bh-aajukTth9hSauOmczpLfrwtQmp3p1p0dKCLoq4wpb2NTdh2yxPyVFVfCY8288hebubLiYP2ez5_nEynmWeW2gzLoGVapmXgpesyo0ttfJKlKYCWaIvQOSsEJqXnqM1gCiVEejRojZacCOG5LLv3cTwvcXUunXYxqZ76TgoZXJmtewo1lM-hpQiVm4T668i_jpgbmfOdebczpzbm-siF32kRsR_3OTacqbFH2wzaLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166850974</pqid></control><display><type>article</type><title>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</title><source>IEEE Electronic Library (IEL)</source><creator>Phan, Anh-Huy ; Tichavsky, Petr ; Cichocki, Andrzej</creator><creatorcontrib>Phan, Anh-Huy ; Tichavsky, Petr ; Cichocki, Andrzej</creatorcontrib><description>In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2887192</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Artificial neural networks ; bounded CPD ; Canonical polyadic decomposition (CPD) ; Convergence ; Decomposition ; degeneracy ; Error correction ; Mathematical analysis ; Matrix decomposition ; Noise reduction ; Norms ; PARAFAC ; Quadratic programming ; Signal processing algorithms ; tensor decomposition for ill conditioned problems ; Tensors ; Weight</subject><ispartof>IEEE transactions on signal processing, 2019-03, Vol.67 (5), p.1175-1190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</citedby><cites>FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</cites><orcidid>0000-0002-8364-7226 ; 0000-0003-0621-4766 ; 0000-0002-5509-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8579207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8579207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phan, Anh-Huy</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><title>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Artificial neural networks</subject><subject>bounded CPD</subject><subject>Canonical polyadic decomposition (CPD)</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>degeneracy</subject><subject>Error correction</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Noise reduction</subject><subject>Norms</subject><subject>PARAFAC</subject><subject>Quadratic programming</subject><subject>Signal processing algorithms</subject><subject>tensor decomposition for ill conditioned problems</subject><subject>Tensors</subject><subject>Weight</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMks2Ht1rrB1QsWsFb2E1n6xbd1GQr-O_dssXTDMzzvgMPIefARgDMXi1e5yPOwIy4MRosPyADsBIyJrU67HaWiyw3-v2YnKS0ZgyktGpAXqYxhkjnERPGn7pZ0UmIEX1bh-aajukTth9hSauOmczpLfrwtQmp3p1p0dKCLoq4wpb2NTdh2yxPyVFVfCY8288hebubLiYP2ez5_nEynmWeW2gzLoGVapmXgpesyo0ttfJKlKYCWaIvQOSsEJqXnqM1gCiVEejRojZacCOG5LLv3cTwvcXUunXYxqZ76TgoZXJmtewo1lM-hpQiVm4T668i_jpgbmfOdebczpzbm-siF32kRsR_3OTacqbFH2wzaLI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Phan, Anh-Huy</creator><creator>Tichavsky, Petr</creator><creator>Cichocki, Andrzej</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8364-7226</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-5509-7773</orcidid></search><sort><creationdate>20190301</creationdate><title>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</title><author>Phan, Anh-Huy ; Tichavsky, Petr ; Cichocki, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2410b6d5b32b0f589b76c63b8f14beca1350a372bc2e981ee4683ece9e7873283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Artificial neural networks</topic><topic>bounded CPD</topic><topic>Canonical polyadic decomposition (CPD)</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>degeneracy</topic><topic>Error correction</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Noise reduction</topic><topic>Norms</topic><topic>PARAFAC</topic><topic>Quadratic programming</topic><topic>Signal processing algorithms</topic><topic>tensor decomposition for ill conditioned problems</topic><topic>Tensors</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Anh-Huy</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, Anh-Huy</au><au>Tichavsky, Petr</au><au>Cichocki, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>67</volume><issue>5</issue><spage>1175</spage><epage>1190</epage><pages>1175-1190</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2018.2887192</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8364-7226</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-5509-7773</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2019-03, Vol.67 (5), p.1175-1190 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2166850974 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms Artificial neural networks bounded CPD Canonical polyadic decomposition (CPD) Convergence Decomposition degeneracy Error correction Mathematical analysis Matrix decomposition Noise reduction Norms PARAFAC Quadratic programming Signal processing algorithms tensor decomposition for ill conditioned problems Tensors Weight |
title | Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Preserving%20Correction:%20A%20Method%20for%20CP%20Decomposition%20at%20a%20Target%20Error%20Bound&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Phan,%20Anh-Huy&rft.date=2019-03-01&rft.volume=67&rft.issue=5&rft.spage=1175&rft.epage=1190&rft.pages=1175-1190&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2887192&rft_dat=%3Cproquest_RIE%3E2166850974%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166850974&rft_id=info:pmid/&rft_ieee_id=8579207&rfr_iscdi=true |