Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems

An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2019-02, Vol.441, p.111-125
Hauptverfasser: Wang, Sheng, Hua, Lin, Yang, Can, Han, Xinghui, Su, Zhuoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue
container_start_page 111
container_title Journal of sound and vibration
container_volume 441
creator Wang, Sheng
Hua, Lin
Yang, Can
Han, Xinghui
Su, Zhuoyu
description An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.
doi_str_mv 10.1016/j.jsv.2018.10.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166747186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18307132</els_id><sourcerecordid>2166747186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK4-gLeA5x6TdHc6jadl0VVY2IuCt5CkK0w13UlvkpllfQvf2Iwj7E0oKKrq_6uKj5D3nO054_LjvJ_zaS8YV7Xes3Z8QXacjX2jeqlekh1jQjSdZD9fkzc5z4yxsWu7Hfl9vW0LOlMwhkyjpxhcghVCMQs9mLTGgI5as5jggK5QDnGiLq4WA0z0EcuBwsMRT2apFrohOHjEDHSpc5Pw19_FtMYJbXq-EmK4KGgu6H2AnGl-ygXW_Ja88mbJ8O5fviI_vnz-fvO1ubu__XZzfde4VvSlEWPX2ZbbSQ79IJlVrRSKO9Vx13JujG9H24vJ9J75SQ29VcL2Ax8E84aLzrVX5MNl75biwxFy0XM8plBPasGlHLqBK1lV_KJyKeacwOst4WrSk-ZMn8nrWVfy-kz-3Krkq-fTxQP1_RNC0tkhVH4TJnBFTxH_4_4DqpGPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166747186</pqid></control><display><type>article</type><title>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Sheng ; Hua, Lin ; Yang, Can ; Han, Xinghui ; Su, Zhuoyu</creator><creatorcontrib>Wang, Sheng ; Hua, Lin ; Yang, Can ; Han, Xinghui ; Su, Zhuoyu</creatorcontrib><description>An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.10.039</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Duffing oscillators ; Equivalence ; Equivalent piecewise linearization ; Harmonic analysis ; Incremental harmonic balance method ; Linearization ; Nonlinear dynamics ; Nonlinear stiffness system ; Nonlinear systems ; Stiffness ; Sub-harmonic resonance ; Vibration analysis</subject><ispartof>Journal of sound and vibration, 2019-02, Vol.441, p.111-125</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 17, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</citedby><cites>FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Hua, Lin</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Han, Xinghui</creatorcontrib><creatorcontrib>Su, Zhuoyu</creatorcontrib><title>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</title><title>Journal of sound and vibration</title><description>An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.</description><subject>Duffing oscillators</subject><subject>Equivalence</subject><subject>Equivalent piecewise linearization</subject><subject>Harmonic analysis</subject><subject>Incremental harmonic balance method</subject><subject>Linearization</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear stiffness system</subject><subject>Nonlinear systems</subject><subject>Stiffness</subject><subject>Sub-harmonic resonance</subject><subject>Vibration analysis</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK4-gLeA5x6TdHc6jadl0VVY2IuCt5CkK0w13UlvkpllfQvf2Iwj7E0oKKrq_6uKj5D3nO054_LjvJ_zaS8YV7Xes3Z8QXacjX2jeqlekh1jQjSdZD9fkzc5z4yxsWu7Hfl9vW0LOlMwhkyjpxhcghVCMQs9mLTGgI5as5jggK5QDnGiLq4WA0z0EcuBwsMRT2apFrohOHjEDHSpc5Pw19_FtMYJbXq-EmK4KGgu6H2AnGl-ygXW_Ja88mbJ8O5fviI_vnz-fvO1ubu__XZzfde4VvSlEWPX2ZbbSQ79IJlVrRSKO9Vx13JujG9H24vJ9J75SQ29VcL2Ax8E84aLzrVX5MNl75biwxFy0XM8plBPasGlHLqBK1lV_KJyKeacwOst4WrSk-ZMn8nrWVfy-kz-3Krkq-fTxQP1_RNC0tkhVH4TJnBFTxH_4_4DqpGPvQ</recordid><startdate>20190217</startdate><enddate>20190217</enddate><creator>Wang, Sheng</creator><creator>Hua, Lin</creator><creator>Yang, Can</creator><creator>Han, Xinghui</creator><creator>Su, Zhuoyu</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190217</creationdate><title>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</title><author>Wang, Sheng ; Hua, Lin ; Yang, Can ; Han, Xinghui ; Su, Zhuoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Duffing oscillators</topic><topic>Equivalence</topic><topic>Equivalent piecewise linearization</topic><topic>Harmonic analysis</topic><topic>Incremental harmonic balance method</topic><topic>Linearization</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear stiffness system</topic><topic>Nonlinear systems</topic><topic>Stiffness</topic><topic>Sub-harmonic resonance</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Hua, Lin</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Han, Xinghui</creatorcontrib><creatorcontrib>Su, Zhuoyu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sheng</au><au>Hua, Lin</au><au>Yang, Can</au><au>Han, Xinghui</au><au>Su, Zhuoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</atitle><jtitle>Journal of sound and vibration</jtitle><date>2019-02-17</date><risdate>2019</risdate><volume>441</volume><spage>111</spage><epage>125</epage><pages>111-125</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.10.039</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2019-02, Vol.441, p.111-125
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2166747186
source ScienceDirect Journals (5 years ago - present)
subjects Duffing oscillators
Equivalence
Equivalent piecewise linearization
Harmonic analysis
Incremental harmonic balance method
Linearization
Nonlinear dynamics
Nonlinear stiffness system
Nonlinear systems
Stiffness
Sub-harmonic resonance
Vibration analysis
title Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20incremental%20harmonic%20balance%20method%20combined%20with%20equivalent%20piecewise%20linearization%20on%20vibrations%20of%20nonlinear%20stiffness%20systems&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Wang,%20Sheng&rft.date=2019-02-17&rft.volume=441&rft.spage=111&rft.epage=125&rft.pages=111-125&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.10.039&rft_dat=%3Cproquest_cross%3E2166747186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166747186&rft_id=info:pmid/&rft_els_id=S0022460X18307132&rfr_iscdi=true