Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems
An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can prov...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2019-02, Vol.441, p.111-125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | |
container_start_page | 111 |
container_title | Journal of sound and vibration |
container_volume | 441 |
creator | Wang, Sheng Hua, Lin Yang, Can Han, Xinghui Su, Zhuoyu |
description | An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems. |
doi_str_mv | 10.1016/j.jsv.2018.10.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166747186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18307132</els_id><sourcerecordid>2166747186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK4-gLeA5x6TdHc6jadl0VVY2IuCt5CkK0w13UlvkpllfQvf2Iwj7E0oKKrq_6uKj5D3nO054_LjvJ_zaS8YV7Xes3Z8QXacjX2jeqlekh1jQjSdZD9fkzc5z4yxsWu7Hfl9vW0LOlMwhkyjpxhcghVCMQs9mLTGgI5as5jggK5QDnGiLq4WA0z0EcuBwsMRT2apFrohOHjEDHSpc5Pw19_FtMYJbXq-EmK4KGgu6H2AnGl-ygXW_Ja88mbJ8O5fviI_vnz-fvO1ubu__XZzfde4VvSlEWPX2ZbbSQ79IJlVrRSKO9Vx13JujG9H24vJ9J75SQ29VcL2Ax8E84aLzrVX5MNl75biwxFy0XM8plBPasGlHLqBK1lV_KJyKeacwOst4WrSk-ZMn8nrWVfy-kz-3Krkq-fTxQP1_RNC0tkhVH4TJnBFTxH_4_4DqpGPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166747186</pqid></control><display><type>article</type><title>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Sheng ; Hua, Lin ; Yang, Can ; Han, Xinghui ; Su, Zhuoyu</creator><creatorcontrib>Wang, Sheng ; Hua, Lin ; Yang, Can ; Han, Xinghui ; Su, Zhuoyu</creatorcontrib><description>An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.10.039</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Duffing oscillators ; Equivalence ; Equivalent piecewise linearization ; Harmonic analysis ; Incremental harmonic balance method ; Linearization ; Nonlinear dynamics ; Nonlinear stiffness system ; Nonlinear systems ; Stiffness ; Sub-harmonic resonance ; Vibration analysis</subject><ispartof>Journal of sound and vibration, 2019-02, Vol.441, p.111-125</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 17, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</citedby><cites>FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Hua, Lin</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Han, Xinghui</creatorcontrib><creatorcontrib>Su, Zhuoyu</creatorcontrib><title>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</title><title>Journal of sound and vibration</title><description>An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.</description><subject>Duffing oscillators</subject><subject>Equivalence</subject><subject>Equivalent piecewise linearization</subject><subject>Harmonic analysis</subject><subject>Incremental harmonic balance method</subject><subject>Linearization</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear stiffness system</subject><subject>Nonlinear systems</subject><subject>Stiffness</subject><subject>Sub-harmonic resonance</subject><subject>Vibration analysis</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK4-gLeA5x6TdHc6jadl0VVY2IuCt5CkK0w13UlvkpllfQvf2Iwj7E0oKKrq_6uKj5D3nO054_LjvJ_zaS8YV7Xes3Z8QXacjX2jeqlekh1jQjSdZD9fkzc5z4yxsWu7Hfl9vW0LOlMwhkyjpxhcghVCMQs9mLTGgI5as5jggK5QDnGiLq4WA0z0EcuBwsMRT2apFrohOHjEDHSpc5Pw19_FtMYJbXq-EmK4KGgu6H2AnGl-ygXW_Ja88mbJ8O5fviI_vnz-fvO1ubu__XZzfde4VvSlEWPX2ZbbSQ79IJlVrRSKO9Vx13JujG9H24vJ9J75SQ29VcL2Ax8E84aLzrVX5MNl75biwxFy0XM8plBPasGlHLqBK1lV_KJyKeacwOst4WrSk-ZMn8nrWVfy-kz-3Krkq-fTxQP1_RNC0tkhVH4TJnBFTxH_4_4DqpGPvQ</recordid><startdate>20190217</startdate><enddate>20190217</enddate><creator>Wang, Sheng</creator><creator>Hua, Lin</creator><creator>Yang, Can</creator><creator>Han, Xinghui</creator><creator>Su, Zhuoyu</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190217</creationdate><title>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</title><author>Wang, Sheng ; Hua, Lin ; Yang, Can ; Han, Xinghui ; Su, Zhuoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2944b31bd675760b836281c841c311aaf39b52da5f0fd875b82b571720fa124c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Duffing oscillators</topic><topic>Equivalence</topic><topic>Equivalent piecewise linearization</topic><topic>Harmonic analysis</topic><topic>Incremental harmonic balance method</topic><topic>Linearization</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear stiffness system</topic><topic>Nonlinear systems</topic><topic>Stiffness</topic><topic>Sub-harmonic resonance</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Hua, Lin</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Han, Xinghui</creatorcontrib><creatorcontrib>Su, Zhuoyu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sheng</au><au>Hua, Lin</au><au>Yang, Can</au><au>Han, Xinghui</au><au>Su, Zhuoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems</atitle><jtitle>Journal of sound and vibration</jtitle><date>2019-02-17</date><risdate>2019</risdate><volume>441</volume><spage>111</spage><epage>125</epage><pages>111-125</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>An improved method is proposed to combine the incremental harmonic balance method (IHBM) with the equivalent piecewise linearization for solving the dynamics of complicated nonlinear stiffness systems. Compared with the traditional IHBM, the proposed method has a wider application range and can provide a standard and unified procedure to deal with various forms of nonlinear stiffness systems. Firstly, the equivalent piecewise linearization is adopted to approximate the nonlinear restoring force of the system to the piecewise-linear restoring force and the linearized error is put forward to evaluate the computation error of this approximation. The procedure is suitable for any form of nonlinear stiffness expression that can be linearized into piecewise-linear stiffness expression. Then the IHBM procedure for the general piecewise-linear stiffness system is derived considering the sub-harmonic responses. The Duffing oscillator is presented to validate the proposed method. Finally, three cases of nonlinear stiffness systems are carried out. The results of these cases show that the proposed method is capable of analyzing the dynamics of these complicated nonlinear stiffness systems.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.10.039</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2019-02, Vol.441, p.111-125 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2166747186 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Duffing oscillators Equivalence Equivalent piecewise linearization Harmonic analysis Incremental harmonic balance method Linearization Nonlinear dynamics Nonlinear stiffness system Nonlinear systems Stiffness Sub-harmonic resonance Vibration analysis |
title | Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20incremental%20harmonic%20balance%20method%20combined%20with%20equivalent%20piecewise%20linearization%20on%20vibrations%20of%20nonlinear%20stiffness%20systems&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Wang,%20Sheng&rft.date=2019-02-17&rft.volume=441&rft.spage=111&rft.epage=125&rft.pages=111-125&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.10.039&rft_dat=%3Cproquest_cross%3E2166747186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166747186&rft_id=info:pmid/&rft_els_id=S0022460X18307132&rfr_iscdi=true |