Computationally efficient modeling strategy for evaporator performance under frost conditions
•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable...
Gespeichert in:
Veröffentlicht in: | International journal of refrigeration 2018-12, Vol.96, p.88-99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | |
container_start_page | 88 |
container_title | International journal of refrigeration |
container_volume | 96 |
creator | Kim, Donghun Braun, James E. Ramaraj, Sugirdhalakshmi |
description | •A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy.
Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy. |
doi_str_mv | 10.1016/j.ijrefrig.2018.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166746729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700718303268</els_id><sourcerecordid>2166746729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BSm4br3pI013yuALBtzoUkImuRlS2qYmmYH592YYXbu6D8493PMRckuhoEDZfV_Y3qPxdluUQHkBXQFQn5EF5W2Xl8DpOVkArSFvAdpLchVCD0BbaPiCfK3cOO-ijNZNchgOGRpjlcUpZqPTONhpm4XoZcTtITPOZ7iXs0tzamf0aTPKSWG2mzT6zHgXYqbcpO3RMFyTCyOHgDe_dUk-n58-Vq_5-v3lbfW4zlXFecxrqVRZdbrdGNZsjO5YtUlRoFY1soqbpmZGGqioMqg0l7ppVFJqXgFCV8tqSe5OvrN33zsMUfRu51OgIErKWFuztuySip1UKr0ZEjIxeztKfxAUxBGl6MUfSnFEKaATCWU6fDgdYsqwt-hFOCJSqK1HFYV29j-LH4x2g38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166746729</pqid></control><display><type>article</type><title>Computationally efficient modeling strategy for evaporator performance under frost conditions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kim, Donghun ; Braun, James E. ; Ramaraj, Sugirdhalakshmi</creator><creatorcontrib>Kim, Donghun ; Braun, James E. ; Ramaraj, Sugirdhalakshmi</creatorcontrib><description>•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy.
Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2018.09.004</identifier><language>eng</language><publisher>Paris: Elsevier Ltd</publisher><subject>Computational efficiency ; Defrost ; Differential equations ; Dégivrage ; Enthalpy ; Evaporation ; Evaporators ; Flat plates ; Frost ; Frost modeling ; Frosting evaporator ; Givrage de l’évaporateur ; Heat exchanger ; Heat exchangers ; Heat transfer ; Ice ; Iterative methods ; Mass transfer ; Mathematical models ; Model accuracy ; Modélisation du givre ; Nonlinear equations ; Refrigeration ; Solvers ; Tube heat exchangers ; Échangeur de chaleur</subject><ispartof>International journal of refrigeration, 2018-12, Vol.96, p.88-99</ispartof><rights>2018 Elsevier Ltd and IIR</rights><rights>Copyright Elsevier Science Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</citedby><cites>FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</cites><orcidid>0000-0002-1868-6341 ; 0000-0002-2508-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrefrig.2018.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Kim, Donghun</creatorcontrib><creatorcontrib>Braun, James E.</creatorcontrib><creatorcontrib>Ramaraj, Sugirdhalakshmi</creatorcontrib><title>Computationally efficient modeling strategy for evaporator performance under frost conditions</title><title>International journal of refrigeration</title><description>•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy.
Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.</description><subject>Computational efficiency</subject><subject>Defrost</subject><subject>Differential equations</subject><subject>Dégivrage</subject><subject>Enthalpy</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Flat plates</subject><subject>Frost</subject><subject>Frost modeling</subject><subject>Frosting evaporator</subject><subject>Givrage de l’évaporateur</subject><subject>Heat exchanger</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Ice</subject><subject>Iterative methods</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Modélisation du givre</subject><subject>Nonlinear equations</subject><subject>Refrigeration</subject><subject>Solvers</subject><subject>Tube heat exchangers</subject><subject>Échangeur de chaleur</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BSm4br3pI013yuALBtzoUkImuRlS2qYmmYH592YYXbu6D8493PMRckuhoEDZfV_Y3qPxdluUQHkBXQFQn5EF5W2Xl8DpOVkArSFvAdpLchVCD0BbaPiCfK3cOO-ijNZNchgOGRpjlcUpZqPTONhpm4XoZcTtITPOZ7iXs0tzamf0aTPKSWG2mzT6zHgXYqbcpO3RMFyTCyOHgDe_dUk-n58-Vq_5-v3lbfW4zlXFecxrqVRZdbrdGNZsjO5YtUlRoFY1soqbpmZGGqioMqg0l7ppVFJqXgFCV8tqSe5OvrN33zsMUfRu51OgIErKWFuztuySip1UKr0ZEjIxeztKfxAUxBGl6MUfSnFEKaATCWU6fDgdYsqwt-hFOCJSqK1HFYV29j-LH4x2g38</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Kim, Donghun</creator><creator>Braun, James E.</creator><creator>Ramaraj, Sugirdhalakshmi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1868-6341</orcidid><orcidid>https://orcid.org/0000-0002-2508-3100</orcidid></search><sort><creationdate>201812</creationdate><title>Computationally efficient modeling strategy for evaporator performance under frost conditions</title><author>Kim, Donghun ; Braun, James E. ; Ramaraj, Sugirdhalakshmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational efficiency</topic><topic>Defrost</topic><topic>Differential equations</topic><topic>Dégivrage</topic><topic>Enthalpy</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Flat plates</topic><topic>Frost</topic><topic>Frost modeling</topic><topic>Frosting evaporator</topic><topic>Givrage de l’évaporateur</topic><topic>Heat exchanger</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Ice</topic><topic>Iterative methods</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Modélisation du givre</topic><topic>Nonlinear equations</topic><topic>Refrigeration</topic><topic>Solvers</topic><topic>Tube heat exchangers</topic><topic>Échangeur de chaleur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghun</creatorcontrib><creatorcontrib>Braun, James E.</creatorcontrib><creatorcontrib>Ramaraj, Sugirdhalakshmi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghun</au><au>Braun, James E.</au><au>Ramaraj, Sugirdhalakshmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computationally efficient modeling strategy for evaporator performance under frost conditions</atitle><jtitle>International journal of refrigeration</jtitle><date>2018-12</date><risdate>2018</risdate><volume>96</volume><spage>88</spage><epage>99</epage><pages>88-99</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy.
Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.</abstract><cop>Paris</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2018.09.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1868-6341</orcidid><orcidid>https://orcid.org/0000-0002-2508-3100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7007 |
ispartof | International journal of refrigeration, 2018-12, Vol.96, p.88-99 |
issn | 0140-7007 1879-2081 |
language | eng |
recordid | cdi_proquest_journals_2166746729 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computational efficiency Defrost Differential equations Dégivrage Enthalpy Evaporation Evaporators Flat plates Frost Frost modeling Frosting evaporator Givrage de l’évaporateur Heat exchanger Heat exchangers Heat transfer Ice Iterative methods Mass transfer Mathematical models Model accuracy Modélisation du givre Nonlinear equations Refrigeration Solvers Tube heat exchangers Échangeur de chaleur |
title | Computationally efficient modeling strategy for evaporator performance under frost conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computationally%20efficient%20modeling%20strategy%20for%20evaporator%20performance%20under%20frost%20conditions&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Kim,%20Donghun&rft.date=2018-12&rft.volume=96&rft.spage=88&rft.epage=99&rft.pages=88-99&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2018.09.004&rft_dat=%3Cproquest_cross%3E2166746729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166746729&rft_id=info:pmid/&rft_els_id=S0140700718303268&rfr_iscdi=true |