Computationally efficient modeling strategy for evaporator performance under frost conditions

•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refrigeration 2018-12, Vol.96, p.88-99
Hauptverfasser: Kim, Donghun, Braun, James E., Ramaraj, Sugirdhalakshmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue
container_start_page 88
container_title International journal of refrigeration
container_volume 96
creator Kim, Donghun
Braun, James E.
Ramaraj, Sugirdhalakshmi
description •A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy. Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.
doi_str_mv 10.1016/j.ijrefrig.2018.09.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166746729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700718303268</els_id><sourcerecordid>2166746729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BSm4br3pI013yuALBtzoUkImuRlS2qYmmYH592YYXbu6D8493PMRckuhoEDZfV_Y3qPxdluUQHkBXQFQn5EF5W2Xl8DpOVkArSFvAdpLchVCD0BbaPiCfK3cOO-ijNZNchgOGRpjlcUpZqPTONhpm4XoZcTtITPOZ7iXs0tzamf0aTPKSWG2mzT6zHgXYqbcpO3RMFyTCyOHgDe_dUk-n58-Vq_5-v3lbfW4zlXFecxrqVRZdbrdGNZsjO5YtUlRoFY1soqbpmZGGqioMqg0l7ppVFJqXgFCV8tqSe5OvrN33zsMUfRu51OgIErKWFuztuySip1UKr0ZEjIxeztKfxAUxBGl6MUfSnFEKaATCWU6fDgdYsqwt-hFOCJSqK1HFYV29j-LH4x2g38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166746729</pqid></control><display><type>article</type><title>Computationally efficient modeling strategy for evaporator performance under frost conditions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kim, Donghun ; Braun, James E. ; Ramaraj, Sugirdhalakshmi</creator><creatorcontrib>Kim, Donghun ; Braun, James E. ; Ramaraj, Sugirdhalakshmi</creatorcontrib><description>•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy. Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2018.09.004</identifier><language>eng</language><publisher>Paris: Elsevier Ltd</publisher><subject>Computational efficiency ; Defrost ; Differential equations ; Dégivrage ; Enthalpy ; Evaporation ; Evaporators ; Flat plates ; Frost ; Frost modeling ; Frosting evaporator ; Givrage de l’évaporateur ; Heat exchanger ; Heat exchangers ; Heat transfer ; Ice ; Iterative methods ; Mass transfer ; Mathematical models ; Model accuracy ; Modélisation du givre ; Nonlinear equations ; Refrigeration ; Solvers ; Tube heat exchangers ; Échangeur de chaleur</subject><ispartof>International journal of refrigeration, 2018-12, Vol.96, p.88-99</ispartof><rights>2018 Elsevier Ltd and IIR</rights><rights>Copyright Elsevier Science Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</citedby><cites>FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</cites><orcidid>0000-0002-1868-6341 ; 0000-0002-2508-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrefrig.2018.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Kim, Donghun</creatorcontrib><creatorcontrib>Braun, James E.</creatorcontrib><creatorcontrib>Ramaraj, Sugirdhalakshmi</creatorcontrib><title>Computationally efficient modeling strategy for evaporator performance under frost conditions</title><title>International journal of refrigeration</title><description>•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy. Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.</description><subject>Computational efficiency</subject><subject>Defrost</subject><subject>Differential equations</subject><subject>Dégivrage</subject><subject>Enthalpy</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Flat plates</subject><subject>Frost</subject><subject>Frost modeling</subject><subject>Frosting evaporator</subject><subject>Givrage de l’évaporateur</subject><subject>Heat exchanger</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Ice</subject><subject>Iterative methods</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Modélisation du givre</subject><subject>Nonlinear equations</subject><subject>Refrigeration</subject><subject>Solvers</subject><subject>Tube heat exchangers</subject><subject>Échangeur de chaleur</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BSm4br3pI013yuALBtzoUkImuRlS2qYmmYH592YYXbu6D8493PMRckuhoEDZfV_Y3qPxdluUQHkBXQFQn5EF5W2Xl8DpOVkArSFvAdpLchVCD0BbaPiCfK3cOO-ijNZNchgOGRpjlcUpZqPTONhpm4XoZcTtITPOZ7iXs0tzamf0aTPKSWG2mzT6zHgXYqbcpO3RMFyTCyOHgDe_dUk-n58-Vq_5-v3lbfW4zlXFecxrqVRZdbrdGNZsjO5YtUlRoFY1soqbpmZGGqioMqg0l7ppVFJqXgFCV8tqSe5OvrN33zsMUfRu51OgIErKWFuztuySip1UKr0ZEjIxeztKfxAUxBGl6MUfSnFEKaATCWU6fDgdYsqwt-hFOCJSqK1HFYV29j-LH4x2g38</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Kim, Donghun</creator><creator>Braun, James E.</creator><creator>Ramaraj, Sugirdhalakshmi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1868-6341</orcidid><orcidid>https://orcid.org/0000-0002-2508-3100</orcidid></search><sort><creationdate>201812</creationdate><title>Computationally efficient modeling strategy for evaporator performance under frost conditions</title><author>Kim, Donghun ; Braun, James E. ; Ramaraj, Sugirdhalakshmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4acc239d7bf65bfd963b20104c4e638f546faf031cfecd8ad55cf65d830e094a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational efficiency</topic><topic>Defrost</topic><topic>Differential equations</topic><topic>Dégivrage</topic><topic>Enthalpy</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Flat plates</topic><topic>Frost</topic><topic>Frost modeling</topic><topic>Frosting evaporator</topic><topic>Givrage de l’évaporateur</topic><topic>Heat exchanger</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Ice</topic><topic>Iterative methods</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Modélisation du givre</topic><topic>Nonlinear equations</topic><topic>Refrigeration</topic><topic>Solvers</topic><topic>Tube heat exchangers</topic><topic>Échangeur de chaleur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghun</creatorcontrib><creatorcontrib>Braun, James E.</creatorcontrib><creatorcontrib>Ramaraj, Sugirdhalakshmi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghun</au><au>Braun, James E.</au><au>Ramaraj, Sugirdhalakshmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computationally efficient modeling strategy for evaporator performance under frost conditions</atitle><jtitle>International journal of refrigeration</jtitle><date>2018-12</date><risdate>2018</risdate><volume>96</volume><spage>88</spage><epage>99</epage><pages>88-99</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•A numerically efficient but accurate model for frosting evaporators is developed.•The enthalpy-based reformulation and linearization method are employed•Simulation results on flat plate and finned-tube heat exchangers are provided.•It is 8 to 20 times faster than reference models but withcomparable accuracy. Growth of a frost layer on an evaporator surface due to low evaporator temperature as well as moisture contained in surrounding air deteriorates performance of a refrigeration system significantly and requires significant energy for defrost. Many studies have been performed to model the heat and mass transfer phenomena in an attempt to have insight and accurate prediction. However, many models form nonlinear algebraic differential equations which require iterative numerical solvers. Computationally efficient but accurate models are needed in order to evaluate overall system performance. The objective of this paper is to introduce a modeling approach to overcome the problem. A solution strategy based on an enthalpy-based reformulation and linearization method will be presented. Comparisons of the proposed and detailed model results for both flat plate and finned tube heat exchangers are provided. The proposed modeling approach is around 10 times faster than reference models while maintaining comparable accuracy.</abstract><cop>Paris</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2018.09.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1868-6341</orcidid><orcidid>https://orcid.org/0000-0002-2508-3100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7007
ispartof International journal of refrigeration, 2018-12, Vol.96, p.88-99
issn 0140-7007
1879-2081
language eng
recordid cdi_proquest_journals_2166746729
source ScienceDirect Journals (5 years ago - present)
subjects Computational efficiency
Defrost
Differential equations
Dégivrage
Enthalpy
Evaporation
Evaporators
Flat plates
Frost
Frost modeling
Frosting evaporator
Givrage de l’évaporateur
Heat exchanger
Heat exchangers
Heat transfer
Ice
Iterative methods
Mass transfer
Mathematical models
Model accuracy
Modélisation du givre
Nonlinear equations
Refrigeration
Solvers
Tube heat exchangers
Échangeur de chaleur
title Computationally efficient modeling strategy for evaporator performance under frost conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computationally%20efficient%20modeling%20strategy%20for%20evaporator%20performance%20under%20frost%20conditions&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Kim,%20Donghun&rft.date=2018-12&rft.volume=96&rft.spage=88&rft.epage=99&rft.pages=88-99&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2018.09.004&rft_dat=%3Cproquest_cross%3E2166746729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166746729&rft_id=info:pmid/&rft_els_id=S0140700718303268&rfr_iscdi=true