Single Remote Sensing Multispectral Image Dehazing Based on a Learning Framework

Given that a single remote sensing image dehazing is an ill-posed problem, this is still a challenging task. In order to improve the visibility of a single hazy remote sensing multispectral image, we developed a novel and effective algorithm based on a learning framework. A linear regression model w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-8
Hauptverfasser: Yuan, Hangfei, Zhang, Zeshu, Guo, Yongfei, Shao, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given that a single remote sensing image dehazing is an ill-posed problem, this is still a challenging task. In order to improve the visibility of a single hazy remote sensing multispectral image, we developed a novel and effective algorithm based on a learning framework. A linear regression model with the relevant features of haze was established. And the gradient descent method is applied to the learning model. Then a hazy image accurate transmission map is obtained by learning the coefficients of the linear model. In addition, we proposed a more effective method to estimate the atmospheric light, which can restrain the influence of highlight areas on the atmospheric light acquisition. Compared with the traditional haze removal methods, the experimental results demonstrate that the proposed algorithm can achieve better visual effect and color fidelity. Both subjective evaluation and objective assessments indicate that the proposed method achieves a better performance than the state-of-the-art methods.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/4131378