Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study
Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper, we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion data. To examine the feasibility of t...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Mei, Yue Yu, Peng |
description | Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper, we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion data. To examine the feasibility of this approach, a number of numerical examples are presented. We observe that the shear modulus distribution is recovered well using harmonic motion measurements. Compared to the static inverse approach, the proposed dynamic inverse method improves the quality of the recovered shear modulus distribution significantly. We also study the influence of the uncertainty in the driving frequency on the reconstruction results and observe that the influence is not very significant in recovering the shape of the inclusion. The proposed inverse algorithm has potential to be a promising tool to diagnose diseases in clinical medicine. |
doi_str_mv | 10.1155/2018/9131340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166665140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166665140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-26cf31f2ebb16ab2dbeb62c9f94041b64b45ece1dd6dd3801d0cc6ff219805f43</originalsourceid><addsrcrecordid>eNqF0MFPwjAUBvDFaCKiN8-miUed9LVbZd4IoJhANAESb0vXtVAC62y7GP57CyPxaC-vh1-_13xRdAv4CSBNewRDv5cBBZrgs6gDKaNxCsnzebhjksRA6NdldOXcBmMCKfQ7kZvxutbVCk2kl9asZCVN49B4y53XAn1aU0vr92iknbe6aLw2FTIKzY3yaKGda6RDS3dM4HZnqvBoZo5qxD1_QQO0WEtjZUjjWzT3Tbm_ji4U3zp5c5rdaPk6Xgwn8fTj7X04mMaCMuxjwoSioIgsCmC8IGUhC0ZEprIEJ1CwpEhSKSSUJStL2sdQYiGYUgSyPk5VQrvRfZtbW_Md_unzjWlsFVbmBFg4oRsc1GOrhDXOWany2uodt_sccH6oNT_Ump9qDfyh5WtdlfxH_6fvWi2DkYr_aYKzlAH9BQXVgo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166665140</pqid></control><display><type>article</type><title>Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mei, Yue ; Yu, Peng</creator><contributor>Rus, Guillermo</contributor><creatorcontrib>Mei, Yue ; Yu, Peng ; Rus, Guillermo</creatorcontrib><description>Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper, we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion data. To examine the feasibility of this approach, a number of numerical examples are presented. We observe that the shear modulus distribution is recovered well using harmonic motion measurements. Compared to the static inverse approach, the proposed dynamic inverse method improves the quality of the recovered shear modulus distribution significantly. We also study the influence of the uncertainty in the driving frequency on the reconstruction results and observe that the influence is not very significant in recovering the shape of the inclusion. The proposed inverse algorithm has potential to be a promising tool to diagnose diseases in clinical medicine.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/9131340</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biology ; Clinical medicine ; Elastic properties ; Elasticity ; Harmonic motion ; Inverse method ; Inverse problems ; Mapping ; Material properties ; Mathematical problems ; Mechanics ; Medicine ; Methods ; Physics ; Shear modulus ; Soft tissues ; Viscoelasticity</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Yue Mei and Peng Yu.</rights><rights>Copyright © 2018 Yue Mei and Peng Yu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-26cf31f2ebb16ab2dbeb62c9f94041b64b45ece1dd6dd3801d0cc6ff219805f43</citedby><cites>FETCH-LOGICAL-c360t-26cf31f2ebb16ab2dbeb62c9f94041b64b45ece1dd6dd3801d0cc6ff219805f43</cites><orcidid>0000-0002-0735-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Rus, Guillermo</contributor><creatorcontrib>Mei, Yue</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><title>Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study</title><title>Mathematical problems in engineering</title><description>Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper, we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion data. To examine the feasibility of this approach, a number of numerical examples are presented. We observe that the shear modulus distribution is recovered well using harmonic motion measurements. Compared to the static inverse approach, the proposed dynamic inverse method improves the quality of the recovered shear modulus distribution significantly. We also study the influence of the uncertainty in the driving frequency on the reconstruction results and observe that the influence is not very significant in recovering the shape of the inclusion. The proposed inverse algorithm has potential to be a promising tool to diagnose diseases in clinical medicine.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Clinical medicine</subject><subject>Elastic properties</subject><subject>Elasticity</subject><subject>Harmonic motion</subject><subject>Inverse method</subject><subject>Inverse problems</subject><subject>Mapping</subject><subject>Material properties</subject><subject>Mathematical problems</subject><subject>Mechanics</subject><subject>Medicine</subject><subject>Methods</subject><subject>Physics</subject><subject>Shear modulus</subject><subject>Soft tissues</subject><subject>Viscoelasticity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0MFPwjAUBvDFaCKiN8-miUed9LVbZd4IoJhANAESb0vXtVAC62y7GP57CyPxaC-vh1-_13xRdAv4CSBNewRDv5cBBZrgs6gDKaNxCsnzebhjksRA6NdldOXcBmMCKfQ7kZvxutbVCk2kl9asZCVN49B4y53XAn1aU0vr92iknbe6aLw2FTIKzY3yaKGda6RDS3dM4HZnqvBoZo5qxD1_QQO0WEtjZUjjWzT3Tbm_ji4U3zp5c5rdaPk6Xgwn8fTj7X04mMaCMuxjwoSioIgsCmC8IGUhC0ZEprIEJ1CwpEhSKSSUJStL2sdQYiGYUgSyPk5VQrvRfZtbW_Md_unzjWlsFVbmBFg4oRsc1GOrhDXOWany2uodt_sccH6oNT_Ump9qDfyh5WtdlfxH_6fvWi2DkYr_aYKzlAH9BQXVgo4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mei, Yue</creator><creator>Yu, Peng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0735-3867</orcidid></search><sort><creationdate>20180101</creationdate><title>Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study</title><author>Mei, Yue ; Yu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-26cf31f2ebb16ab2dbeb62c9f94041b64b45ece1dd6dd3801d0cc6ff219805f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Clinical medicine</topic><topic>Elastic properties</topic><topic>Elasticity</topic><topic>Harmonic motion</topic><topic>Inverse method</topic><topic>Inverse problems</topic><topic>Mapping</topic><topic>Material properties</topic><topic>Mathematical problems</topic><topic>Mechanics</topic><topic>Medicine</topic><topic>Methods</topic><topic>Physics</topic><topic>Shear modulus</topic><topic>Soft tissues</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Yue</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Yue</au><au>Yu, Peng</au><au>Rus, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Characterizing heterogeneous elastic property distribution of soft tissues is of great importance in disease detection. In this paper, we investigate an inverse approach to map the heterogeneous material property distribution of soft solids using harmonic motion data. To examine the feasibility of this approach, a number of numerical examples are presented. We observe that the shear modulus distribution is recovered well using harmonic motion measurements. Compared to the static inverse approach, the proposed dynamic inverse method improves the quality of the recovered shear modulus distribution significantly. We also study the influence of the uncertainty in the driving frequency on the reconstruction results and observe that the influence is not very significant in recovering the shape of the inclusion. The proposed inverse algorithm has potential to be a promising tool to diagnose diseases in clinical medicine.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/9131340</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0735-3867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-8 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2166665140 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Biology Clinical medicine Elastic properties Elasticity Harmonic motion Inverse method Inverse problems Mapping Material properties Mathematical problems Mechanics Medicine Methods Physics Shear modulus Soft tissues Viscoelasticity |
title | Mapping Heterogeneous Elastic Property Distribution of Soft Tissues Using Harmonic Motion Data: A Theoretical Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Heterogeneous%20Elastic%20Property%20Distribution%20of%20Soft%20Tissues%20Using%20Harmonic%20Motion%20Data:%20A%20Theoretical%20Study&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Mei,%20Yue&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/9131340&rft_dat=%3Cproquest_cross%3E2166665140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166665140&rft_id=info:pmid/&rfr_iscdi=true |