Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation
Nano-polymeric solar paints and sol–gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2019-02, Vol.44 (2), p.1525-1541 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1541 |
---|---|
container_issue | 2 |
container_start_page | 1525 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 44 |
creator | Mehmood, R. Tabassum, Rabil Kuharat, S. Bég, O. Anwar Babaie, M. |
description | Nano-polymeric solar paints and sol–gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the
steady, two-dimensional,
non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol–gels under radiative heat flux
. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, nonlinear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge–Kutta–Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a variational iterative method utilizing Lagrangian multipliers. The impact of key emerging dimensionless parameters, i.e.
obliqueness parameter, radiation–conduction Rosseland number (Rd), thermal slip parameter
(
α
)
,
viscosity parameter (m), nanoparticles volume fraction
(
ϕ
)
, on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect, whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. |
doi_str_mv | 10.1007/s13369-018-3599-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166368483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166368483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-99b05dcda6f4e7ab0af8a188b8b9e06a08df0d73174315ad6b3af9fab24960183</originalsourceid><addsrcrecordid>eNp1kcFu1DAURSMEElXpB7CzxNpgx4ljs0MDFKRCpc5QsbNekhdq5NjBdkD5m34qng4Sq65sy--eq_tuVb3k7DVnrHuTuBBSU8YVFa3WdHtSndVcc9rUij99uAvayu778-oiJduzRgndci7OqvvDHcYZHNk7uxDryXXv7K8VyQ2MFrL9jeQr-ECX4LYZI7lERw4RfFpCzOSPzXfkgPOCEfIakb7HBf2IPpNbm4aQbN7ekn1wEMkuOIdDDvEBOEPGaIvvLhQX_4N8Ab9OMBTK8bW38-rKR_AvqmcTuIQX_87z6tvHD4fdJ3p1ffl59-6KDiVyplr3rB2HEeTUYAc9g0kBV6pXvUYmgalxYmMneNcI3sIoewGTnqCvGy3L4sR59erEXWIo-VM2P8MafbE0NZdSSFWWVqb4aWqIIaWIk1minSFuhjNz7MKcujAFaY5dmK1o6pMmLcdsGP-THxf9BQghkVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166368483</pqid></control><display><type>article</type><title>Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation</title><source>Springer Nature - Complete Springer Journals</source><creator>Mehmood, R. ; Tabassum, Rabil ; Kuharat, S. ; Bég, O. Anwar ; Babaie, M.</creator><creatorcontrib>Mehmood, R. ; Tabassum, Rabil ; Kuharat, S. ; Bég, O. Anwar ; Babaie, M.</creatorcontrib><description>Nano-polymeric solar paints and sol–gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the
steady, two-dimensional,
non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol–gels under radiative heat flux
. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, nonlinear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge–Kutta–Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a variational iterative method utilizing Lagrangian multipliers. The impact of key emerging dimensionless parameters, i.e.
obliqueness parameter, radiation–conduction Rosseland number (Rd), thermal slip parameter
(
α
)
,
viscosity parameter (m), nanoparticles volume fraction
(
ϕ
)
, on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect, whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-018-3599-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary value problems ; Computer simulation ; Conservation equations ; Corrosion prevention ; Energy conservation ; Engineering ; Fluid boundaries ; Heat ; Heat flux ; High temperature ; Humanities and Social Sciences ; Iterative methods ; Momentum ; multidisciplinary ; Nanomaterials ; Obliqueness ; Parameters ; Photovoltaic cells ; Polymer gels ; Polymers ; Protective coatings ; Radiative heat transfer ; Research Article - Mechanical Engineering ; Runge-Kutta method ; Science ; Shear stress ; Solar cells ; Stagnation flow ; Temperature ; Temperature dependence ; Two dimensional boundary layer ; Viscosity</subject><ispartof>Arabian journal for science and engineering (2011), 2019-02, Vol.44 (2), p.1525-1541</ispartof><rights>King Fahd University of Petroleum & Minerals 2018</rights><rights>Copyright Springer Science & Business Media 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-99b05dcda6f4e7ab0af8a188b8b9e06a08df0d73174315ad6b3af9fab24960183</citedby><cites>FETCH-LOGICAL-c359t-99b05dcda6f4e7ab0af8a188b8b9e06a08df0d73174315ad6b3af9fab24960183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-018-3599-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-018-3599-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mehmood, R.</creatorcontrib><creatorcontrib>Tabassum, Rabil</creatorcontrib><creatorcontrib>Kuharat, S.</creatorcontrib><creatorcontrib>Bég, O. Anwar</creatorcontrib><creatorcontrib>Babaie, M.</creatorcontrib><title>Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>Nano-polymeric solar paints and sol–gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the
steady, two-dimensional,
non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol–gels under radiative heat flux
. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, nonlinear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge–Kutta–Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a variational iterative method utilizing Lagrangian multipliers. The impact of key emerging dimensionless parameters, i.e.
obliqueness parameter, radiation–conduction Rosseland number (Rd), thermal slip parameter
(
α
)
,
viscosity parameter (m), nanoparticles volume fraction
(
ϕ
)
, on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect, whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures.</description><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Conservation equations</subject><subject>Corrosion prevention</subject><subject>Energy conservation</subject><subject>Engineering</subject><subject>Fluid boundaries</subject><subject>Heat</subject><subject>Heat flux</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Iterative methods</subject><subject>Momentum</subject><subject>multidisciplinary</subject><subject>Nanomaterials</subject><subject>Obliqueness</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Polymer gels</subject><subject>Polymers</subject><subject>Protective coatings</subject><subject>Radiative heat transfer</subject><subject>Research Article - Mechanical Engineering</subject><subject>Runge-Kutta method</subject><subject>Science</subject><subject>Shear stress</subject><subject>Solar cells</subject><subject>Stagnation flow</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Two dimensional boundary layer</subject><subject>Viscosity</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAURSMEElXpB7CzxNpgx4ljs0MDFKRCpc5QsbNekhdq5NjBdkD5m34qng4Sq65sy--eq_tuVb3k7DVnrHuTuBBSU8YVFa3WdHtSndVcc9rUij99uAvayu778-oiJduzRgndci7OqvvDHcYZHNk7uxDryXXv7K8VyQ2MFrL9jeQr-ECX4LYZI7lERw4RfFpCzOSPzXfkgPOCEfIakb7HBf2IPpNbm4aQbN7ekn1wEMkuOIdDDvEBOEPGaIvvLhQX_4N8Ab9OMBTK8bW38-rKR_AvqmcTuIQX_87z6tvHD4fdJ3p1ffl59-6KDiVyplr3rB2HEeTUYAc9g0kBV6pXvUYmgalxYmMneNcI3sIoewGTnqCvGy3L4sR59erEXWIo-VM2P8MafbE0NZdSSFWWVqb4aWqIIaWIk1minSFuhjNz7MKcujAFaY5dmK1o6pMmLcdsGP-THxf9BQghkVw</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Mehmood, R.</creator><creator>Tabassum, Rabil</creator><creator>Kuharat, S.</creator><creator>Bég, O. Anwar</creator><creator>Babaie, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190212</creationdate><title>Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation</title><author>Mehmood, R. ; Tabassum, Rabil ; Kuharat, S. ; Bég, O. Anwar ; Babaie, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-99b05dcda6f4e7ab0af8a188b8b9e06a08df0d73174315ad6b3af9fab24960183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Conservation equations</topic><topic>Corrosion prevention</topic><topic>Energy conservation</topic><topic>Engineering</topic><topic>Fluid boundaries</topic><topic>Heat</topic><topic>Heat flux</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Iterative methods</topic><topic>Momentum</topic><topic>multidisciplinary</topic><topic>Nanomaterials</topic><topic>Obliqueness</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Polymer gels</topic><topic>Polymers</topic><topic>Protective coatings</topic><topic>Radiative heat transfer</topic><topic>Research Article - Mechanical Engineering</topic><topic>Runge-Kutta method</topic><topic>Science</topic><topic>Shear stress</topic><topic>Solar cells</topic><topic>Stagnation flow</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Two dimensional boundary layer</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehmood, R.</creatorcontrib><creatorcontrib>Tabassum, Rabil</creatorcontrib><creatorcontrib>Kuharat, S.</creatorcontrib><creatorcontrib>Bég, O. Anwar</creatorcontrib><creatorcontrib>Babaie, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehmood, R.</au><au>Tabassum, Rabil</au><au>Kuharat, S.</au><au>Bég, O. Anwar</au><au>Babaie, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2019-02-12</date><risdate>2019</risdate><volume>44</volume><issue>2</issue><spage>1525</spage><epage>1541</epage><pages>1525-1541</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Nano-polymeric solar paints and sol–gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the
steady, two-dimensional,
non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol–gels under radiative heat flux
. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, nonlinear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge–Kutta–Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a variational iterative method utilizing Lagrangian multipliers. The impact of key emerging dimensionless parameters, i.e.
obliqueness parameter, radiation–conduction Rosseland number (Rd), thermal slip parameter
(
α
)
,
viscosity parameter (m), nanoparticles volume fraction
(
ϕ
)
, on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect, whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-018-3599-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2019-02, Vol.44 (2), p.1525-1541 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_2166368483 |
source | Springer Nature - Complete Springer Journals |
subjects | Boundary value problems Computer simulation Conservation equations Corrosion prevention Energy conservation Engineering Fluid boundaries Heat Heat flux High temperature Humanities and Social Sciences Iterative methods Momentum multidisciplinary Nanomaterials Obliqueness Parameters Photovoltaic cells Polymer gels Polymers Protective coatings Radiative heat transfer Research Article - Mechanical Engineering Runge-Kutta method Science Shear stress Solar cells Stagnation flow Temperature Temperature dependence Two dimensional boundary layer Viscosity |
title | Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Slip%20in%20Oblique%20Radiative%20Nano-polymer%20Gel%20Transport%20with%20Temperature-Dependent%20Viscosity:%20Solar%20Collector%20Nanomaterial%20Coating%20Manufacturing%20Simulation&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Mehmood,%20R.&rft.date=2019-02-12&rft.volume=44&rft.issue=2&rft.spage=1525&rft.epage=1541&rft.pages=1525-1541&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-018-3599-y&rft_dat=%3Cproquest_cross%3E2166368483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166368483&rft_id=info:pmid/&rfr_iscdi=true |