Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy

The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 10 7 W/cm 2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a sligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian metallurgy Metally 2018-09, Vol.2018 (9), p.826-834
Hauptverfasser: Borovitskaya, I. V., Gribkov, V. A., Grigorovich, K. V., Demin, A. S., Maslyaev, S. A., Morozov, E. V., Pimenov, V. N., Sprygin, G. S., Zepelev, A. B., Gusakov, M. S., Logachev, I. A., Bondarenko, G. G., Gaidar, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 9
container_start_page 826
container_title Russian metallurgy Metally
container_volume 2018
creator Borovitskaya, I. V.
Gribkov, V. A.
Grigorovich, K. V.
Demin, A. S.
Maslyaev, S. A.
Morozov, E. V.
Pimenov, V. N.
Sprygin, G. S.
Zepelev, A. B.
Gusakov, M. S.
Logachev, I. A.
Bondarenko, G. G.
Gaidar, A. I.
description The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 10 7 W/cm 2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a slight increase in q  causes melting of local regions in the surface and the formation of a wavy relief. Beam–plasma irradiation results in structural and phase changes in the irradiated surface layer, namely, the precipitation of microinclusions (complex niobium carbides), a redistribution of alloy elements, a slight decrease in the microhardness, and, accordingly, slight softening. These changes in the microstructure and the properties are determined by the melting of the irradiated surface in local regions, partial sputtering of solid-phase regions, and recrystallization in the near-surface layer during pulsed heating for each beam–plasma action.
doi_str_mv 10.1134/S0036029518090057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2166306193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166306193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6eb90dfda15297466d6c29c24ab3d0d7a5deec0c188887cf7ea3d8220df7a50c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-okaZLNsZTWFioW1POS5o-2pJua7IJ-e1MqehDnMjC_997AQ-iawC0hbHT3BMAEUMVJDQqAyxM0IJzzSlDOT9HggKsDP0cXOW8BJIBQA_Qw9d6ZDkePV33IzuK5C5t-hxexxbPQf7iMdftzXQWddxoX1r05vGhNbF3AktR4HEL8vERnXpeUq-89RC-z6fNkXi0f7xeT8bIyjIiuEm6twHqrCadKjoSwwlBl6EivmQUrNbfOGTCkLiONl04zW1NaPIWBYUN0c8zdp_jeu9w129intrxsKBGCgSCKFRU5qkyKOSfnm33a7HT6bAg0h9aaP60VDz16ctG2ry79Jv9v-gIsv2xv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166306193</pqid></control><display><type>article</type><title>Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy</title><source>SpringerNature Journals</source><creator>Borovitskaya, I. V. ; Gribkov, V. A. ; Grigorovich, K. V. ; Demin, A. S. ; Maslyaev, S. A. ; Morozov, E. V. ; Pimenov, V. N. ; Sprygin, G. S. ; Zepelev, A. B. ; Gusakov, M. S. ; Logachev, I. A. ; Bondarenko, G. G. ; Gaidar, A. I.</creator><creatorcontrib>Borovitskaya, I. V. ; Gribkov, V. A. ; Grigorovich, K. V. ; Demin, A. S. ; Maslyaev, S. A. ; Morozov, E. V. ; Pimenov, V. N. ; Sprygin, G. S. ; Zepelev, A. B. ; Gusakov, M. S. ; Logachev, I. A. ; Bondarenko, G. G. ; Gaidar, A. I.</creatorcontrib><description>The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 10 7 W/cm 2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a slight increase in q  causes melting of local regions in the surface and the formation of a wavy relief. Beam–plasma irradiation results in structural and phase changes in the irradiated surface layer, namely, the precipitation of microinclusions (complex niobium carbides), a redistribution of alloy elements, a slight decrease in the microhardness, and, accordingly, slight softening. These changes in the microstructure and the properties are determined by the melting of the irradiated surface in local regions, partial sputtering of solid-phase regions, and recrystallization in the near-surface layer during pulsed heating for each beam–plasma action.</description><identifier>ISSN: 0036-0295</identifier><identifier>EISSN: 1555-6255</identifier><identifier>EISSN: 1531-8648</identifier><identifier>DOI: 10.1134/S0036029518090057</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloying elements ; Chemistry and Materials Science ; Helium ; Helium ions ; Helium plasma ; Ion flux ; Irradiation ; Materials Science ; Metallic Materials ; Microhardness ; Nickel base alloys ; Niobium carbide ; Phase transitions ; Plasma ; Plasma focus ; Pulse duration ; Recrystallization ; Solid phases ; Superalloys ; Surface layers</subject><ispartof>Russian metallurgy Metally, 2018-09, Vol.2018 (9), p.826-834</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Russian Metallurgy (Metally) is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6eb90dfda15297466d6c29c24ab3d0d7a5deec0c188887cf7ea3d8220df7a50c3</citedby><cites>FETCH-LOGICAL-c316t-6eb90dfda15297466d6c29c24ab3d0d7a5deec0c188887cf7ea3d8220df7a50c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0036029518090057$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0036029518090057$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borovitskaya, I. V.</creatorcontrib><creatorcontrib>Gribkov, V. A.</creatorcontrib><creatorcontrib>Grigorovich, K. V.</creatorcontrib><creatorcontrib>Demin, A. S.</creatorcontrib><creatorcontrib>Maslyaev, S. A.</creatorcontrib><creatorcontrib>Morozov, E. V.</creatorcontrib><creatorcontrib>Pimenov, V. N.</creatorcontrib><creatorcontrib>Sprygin, G. S.</creatorcontrib><creatorcontrib>Zepelev, A. B.</creatorcontrib><creatorcontrib>Gusakov, M. S.</creatorcontrib><creatorcontrib>Logachev, I. A.</creatorcontrib><creatorcontrib>Bondarenko, G. G.</creatorcontrib><creatorcontrib>Gaidar, A. I.</creatorcontrib><title>Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy</title><title>Russian metallurgy Metally</title><addtitle>Russ. Metall</addtitle><description>The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 10 7 W/cm 2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a slight increase in q  causes melting of local regions in the surface and the formation of a wavy relief. Beam–plasma irradiation results in structural and phase changes in the irradiated surface layer, namely, the precipitation of microinclusions (complex niobium carbides), a redistribution of alloy elements, a slight decrease in the microhardness, and, accordingly, slight softening. These changes in the microstructure and the properties are determined by the melting of the irradiated surface in local regions, partial sputtering of solid-phase regions, and recrystallization in the near-surface layer during pulsed heating for each beam–plasma action.</description><subject>Alloying elements</subject><subject>Chemistry and Materials Science</subject><subject>Helium</subject><subject>Helium ions</subject><subject>Helium plasma</subject><subject>Ion flux</subject><subject>Irradiation</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Nickel base alloys</subject><subject>Niobium carbide</subject><subject>Phase transitions</subject><subject>Plasma</subject><subject>Plasma focus</subject><subject>Pulse duration</subject><subject>Recrystallization</subject><subject>Solid phases</subject><subject>Superalloys</subject><subject>Surface layers</subject><issn>0036-0295</issn><issn>1555-6255</issn><issn>1531-8648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-okaZLNsZTWFioW1POS5o-2pJua7IJ-e1MqehDnMjC_997AQ-iawC0hbHT3BMAEUMVJDQqAyxM0IJzzSlDOT9HggKsDP0cXOW8BJIBQA_Qw9d6ZDkePV33IzuK5C5t-hxexxbPQf7iMdftzXQWddxoX1r05vGhNbF3AktR4HEL8vERnXpeUq-89RC-z6fNkXi0f7xeT8bIyjIiuEm6twHqrCadKjoSwwlBl6EivmQUrNbfOGTCkLiONl04zW1NaPIWBYUN0c8zdp_jeu9w129intrxsKBGCgSCKFRU5qkyKOSfnm33a7HT6bAg0h9aaP60VDz16ctG2ry79Jv9v-gIsv2xv</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Borovitskaya, I. V.</creator><creator>Gribkov, V. A.</creator><creator>Grigorovich, K. V.</creator><creator>Demin, A. S.</creator><creator>Maslyaev, S. A.</creator><creator>Morozov, E. V.</creator><creator>Pimenov, V. N.</creator><creator>Sprygin, G. S.</creator><creator>Zepelev, A. B.</creator><creator>Gusakov, M. S.</creator><creator>Logachev, I. A.</creator><creator>Bondarenko, G. G.</creator><creator>Gaidar, A. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180901</creationdate><title>Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy</title><author>Borovitskaya, I. V. ; Gribkov, V. A. ; Grigorovich, K. V. ; Demin, A. S. ; Maslyaev, S. A. ; Morozov, E. V. ; Pimenov, V. N. ; Sprygin, G. S. ; Zepelev, A. B. ; Gusakov, M. S. ; Logachev, I. A. ; Bondarenko, G. G. ; Gaidar, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6eb90dfda15297466d6c29c24ab3d0d7a5deec0c188887cf7ea3d8220df7a50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloying elements</topic><topic>Chemistry and Materials Science</topic><topic>Helium</topic><topic>Helium ions</topic><topic>Helium plasma</topic><topic>Ion flux</topic><topic>Irradiation</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Nickel base alloys</topic><topic>Niobium carbide</topic><topic>Phase transitions</topic><topic>Plasma</topic><topic>Plasma focus</topic><topic>Pulse duration</topic><topic>Recrystallization</topic><topic>Solid phases</topic><topic>Superalloys</topic><topic>Surface layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borovitskaya, I. V.</creatorcontrib><creatorcontrib>Gribkov, V. A.</creatorcontrib><creatorcontrib>Grigorovich, K. V.</creatorcontrib><creatorcontrib>Demin, A. S.</creatorcontrib><creatorcontrib>Maslyaev, S. A.</creatorcontrib><creatorcontrib>Morozov, E. V.</creatorcontrib><creatorcontrib>Pimenov, V. N.</creatorcontrib><creatorcontrib>Sprygin, G. S.</creatorcontrib><creatorcontrib>Zepelev, A. B.</creatorcontrib><creatorcontrib>Gusakov, M. S.</creatorcontrib><creatorcontrib>Logachev, I. A.</creatorcontrib><creatorcontrib>Bondarenko, G. G.</creatorcontrib><creatorcontrib>Gaidar, A. I.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian metallurgy Metally</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borovitskaya, I. V.</au><au>Gribkov, V. A.</au><au>Grigorovich, K. V.</au><au>Demin, A. S.</au><au>Maslyaev, S. A.</au><au>Morozov, E. V.</au><au>Pimenov, V. N.</au><au>Sprygin, G. S.</au><au>Zepelev, A. B.</au><au>Gusakov, M. S.</au><au>Logachev, I. A.</au><au>Bondarenko, G. G.</au><au>Gaidar, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy</atitle><jtitle>Russian metallurgy Metally</jtitle><stitle>Russ. Metall</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>2018</volume><issue>9</issue><spage>826</spage><epage>834</epage><pages>826-834</pages><issn>0036-0295</issn><eissn>1555-6255</eissn><eissn>1531-8648</eissn><abstract>The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 10 7 W/cm 2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a slight increase in q  causes melting of local regions in the surface and the formation of a wavy relief. Beam–plasma irradiation results in structural and phase changes in the irradiated surface layer, namely, the precipitation of microinclusions (complex niobium carbides), a redistribution of alloy elements, a slight decrease in the microhardness, and, accordingly, slight softening. These changes in the microstructure and the properties are determined by the melting of the irradiated surface in local regions, partial sputtering of solid-phase regions, and recrystallization in the near-surface layer during pulsed heating for each beam–plasma action.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0036029518090057</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0295
ispartof Russian metallurgy Metally, 2018-09, Vol.2018 (9), p.826-834
issn 0036-0295
1555-6255
1531-8648
language eng
recordid cdi_proquest_journals_2166306193
source SpringerNature Journals
subjects Alloying elements
Chemistry and Materials Science
Helium
Helium ions
Helium plasma
Ion flux
Irradiation
Materials Science
Metallic Materials
Microhardness
Nickel base alloys
Niobium carbide
Phase transitions
Plasma
Plasma focus
Pulse duration
Recrystallization
Solid phases
Superalloys
Surface layers
title Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pulsed%20Helium%20Ion%20Fluxes%20and%20Helium%20Plasma%20on%20the%20Inconel%20718%20Alloy&rft.jtitle=Russian%20metallurgy%20Metally&rft.au=Borovitskaya,%20I.%20V.&rft.date=2018-09-01&rft.volume=2018&rft.issue=9&rft.spage=826&rft.epage=834&rft.pages=826-834&rft.issn=0036-0295&rft.eissn=1555-6255&rft_id=info:doi/10.1134/S0036029518090057&rft_dat=%3Cproquest_cross%3E2166306193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166306193&rft_id=info:pmid/&rfr_iscdi=true